欢迎来到天天文库
浏览记录
ID:56672323
大小:255.50 KB
页数:3页
时间:2020-07-03
《高中数学 1.1.1正弦定理教案 新人教A版必修 .doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:§1.1.1正弦定理授课类型:新授课●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积
2、等知识间的联系来体现事物之间的普遍联系与辩证统一。●教学重点正弦定理的探索和证明及其基本应用。●教学难点已知两边和其中一边的对角解三角形时判断解的个数。●教学过程Ⅰ.课题导入如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。A思考:C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角C的大小的增大而增大。能否用一个等式把这种关系精确地表示出来?CBⅡ.讲授新课[探索研究](图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如
3、图1.1-2,在RtABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有,,又,A则bc从而在直角三角形ABC中,CaB(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则,C同理可得,ba从而AcB(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。(证法二)
4、:过点A作,C由向量的加法可得则AB∴∴,即同理,过点C作,可得从而类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使,,;(2)等价于,,从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如;②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如。一般地,已知三角
5、形的某些边和角,求其他的边和角的过程叫作解三角形。[例题分析]例1.在中,已知,,cm,解三角形。解:根据三角形内角和定理,;根据正弦定理,;根据正弦定理,评述:对于解三角形中的复杂运算可使用计算器。例2.在中,已知cm,cm,,解三角形(角度精确到,边长精确到1cm)。解:根据正弦定理,因为<<,所以,或⑴当时,,⑵当时,,评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。Ⅲ.课堂练习第5页练习第1(1)、2(1)题。[补充练习]已知ABC中,,求(答案:1:2:3)Ⅳ.课时小结(由学生归纳总
6、结)(1)定理的表示形式:;或,,(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;②已知两边和其中一边对角,求另一边的对角。Ⅴ.课后作业第10页[习题1.1]A组第1(1)、2(1)题。●板书设计●授后记
此文档下载收益归作者所有