八年级数学《18.2勾股定理的逆定理(三)》教案 人教新课标版.doc

八年级数学《18.2勾股定理的逆定理(三)》教案 人教新课标版.doc

ID:56622602

大小:79.00 KB

页数:2页

时间:2020-06-30

八年级数学《18.2勾股定理的逆定理(三)》教案 人教新课标版.doc_第1页
八年级数学《18.2勾股定理的逆定理(三)》教案 人教新课标版.doc_第2页
资源描述:

《八年级数学《18.2勾股定理的逆定理(三)》教案 人教新课标版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、18.2勾股定理的逆定理(三)一、教学目标二、重点、难点1.重点:利用勾股定理及逆定理解综合题。2.难点:利用勾股定理及逆定理解综合题。三、例题的意图分析例1(补充)利用因式分解和勾股定理的逆定理判断三角形的形状。例2(补充)使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。本题辅助线作平行线间距离无法求解。创造3、4、5勾股数,利用勾股定理的逆定理证明DE就是平行线间距离。例3(补充)勾股定理及逆定理的综合应用,注意条件的转化及变形。四、课堂引入勾股定理和它的逆定理是黄金搭档,经常综合应用来解决一些难度较大的题目。五、例习题分析例1(补充)已知:在△

2、ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。试判断△ABC的形状。分析:⑴移项,配成三个完全平方;⑵三个非负数的和为0,则都为0;⑶已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形。例2(补充)已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3。求:四边形ABCD的面积。分析:⑴作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA);⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC中,3、4、5勾股数,△DEC为直角三角形,DE⊥BC;⑷利用梯形面

3、积公式可解,或利用三角形的面积。例3(补充)已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD。求证:△ABC是直角三角形。分析:∵AC2=AD2+CD2,BC2=CD2+BD2∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2六、课堂练习1.若△ABC的三边a、b、c,满足(a-b)(a2+b2-c2)=0,则△ABC是()A.等腰三角形;B.直角三角形;C.等腰三角形或直角三角形;D.等腰直角三角形。2.若△ABC的三边a、b、c,满足a:b:c=1:1:,试判断△ABC的形状。3.已知:如图,四边形AB

4、CD,AB=1,BC=,CD=,AD=3,且AB⊥BC。求:四边形ABCD的面积。4.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,且CD2=AD·BD。求证:△ABC中是直角三角形。七、课后练习,1.若△ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求△ABC的面积。2.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm。求证:△ABC是等腰三角形。3.已知:如图,∠1=∠2,AD=AE,D为BC上一点,且BD=DC,AC2=AE2+CE2。求证:AB2=AE2+CE2。4.已知△ABC的三边为a、b、c,且a+b=4,ab=

5、1,c=,试判定△ABC的形状。课后反思:八、参考答案:课堂练习:1.C;2.△ABC是等腰直角三角形;3.4.提示:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2,∴∠ACB=90°。课后练习:1.6;2.提示:因为AD2+BD2=AB2,所以AD⊥BD,根据线段垂直平分线的判定可知AB=BC。3.提示:有AC2=AE2+CE2得∠E=90°;由△ADC≌△AEC,得AD=AE,CD=CE,∠ADC=∠BE=90°,根据线段垂直平分线的判定可知AB=AC,则AB2=AE

6、2+CE2。4.提示:直角三角形,用代数方法证明,因为(a+b)2=16,a2+2ab+b2=16,ab=1,所以a2+b2=14。又因为c2=14,所以a2+b2=c2。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。