高中数学 解析几何初步 教学研究.doc

高中数学 解析几何初步 教学研究.doc

ID:56563813

大小:1.45 MB

页数:20页

时间:2020-06-28

高中数学 解析几何初步 教学研究.doc_第1页
高中数学 解析几何初步 教学研究.doc_第2页
高中数学 解析几何初步 教学研究.doc_第3页
高中数学 解析几何初步 教学研究.doc_第4页
高中数学 解析几何初步 教学研究.doc_第5页
资源描述:

《高中数学 解析几何初步 教学研究.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题讲座高中数学“解析几何初步”教学研究一、对“解析几何初步”数学知识的深层次理解(一)“解析几何初步”知识结构解析几何初步的内容在新课标中安排在必修课程的必修2中.解析几何初步的内容是一个承上启下的内容.学生在七年级学习过数轴,这是一维的坐标系,当时学生的注意力集中在:数与数轴上的点的对应关系.开始是有理数和数轴上的点的对应关系,后来学习了实数之后,确认了实数与数轴上的点一一对应.学生对于数轴可以确定一维空间的点的坐标的认识还处于初级阶段.到了九年级,学习了平面直角坐标系,由两个互相垂直的数轴按照一定的规则组成平面直角坐标系,这时学生对于坐标系可以确定点的

2、位置的认识有明显的提升.加上初中学习了一次函数、二次函数、反比例函数的图像,在平面直角坐标系下,学生不仅学习了平面上的点与有序数对的一一对应的关系,还初步体验了曲线与方程的概念,这种感受还停留在直观的、具体的认识,还缺乏理论上的认识.-20-用心爱心专心解析几何初步的内容在结束时,以长方体为模型,建立了空间直角坐标系.充实和完善了直角坐标系,为在高校进一步学习空间解析几何奠定基础.解析几何初步的内容在建立了直角坐标系之后,重点研究了两类曲线:直线和圆.通过这两种曲线的研究,渗透曲线与方程的概念.对于生源较好的学生,也可以尝试调整教学内容的顺序,先讲曲线与方程

3、的概念,再讲直线和圆的方程.这两种不同的方案,一种是由特殊到一般,另一种是由一般到特殊.课程标准的设置也考虑到有些学生接受曲线与方程的概念有一定的困难,所以在文科的选学系列中没有设置曲线与方程的内容.(二)感悟解析几何的学科特点从本讲开始,正式进入解析几何的学习,解析几何学科的特点是运用代数的方法来研究几何图形的性质.具体的说:过去研究两条直线是否平行,我们通常是使用平行线的判定定理:同位角相等,则两直线平行;内错角相等,则两直线平行;同旁内角互补,则两直线平行.在解析几何中,判断两条直线的位置关系,则是依据两条直线的斜率,当两条直线的斜率存在时,依据斜率与

4、截距就可以判断两条直线是否平行;再例如,过去判断直线与圆是否相切,依据切线的判定定理;现在则可以通过联立直线与圆的方程,通过解方程组,得出方程组的解得个数确定直线和圆的位置关系.平面直角坐标系不仅能够使平面上的点与有序数对建立一一对应的关系,还可以将曲线与方程之间建立一一对应的关系,这种关系可以进一步将图形的几何性质和一些数量之间的关系建立起一种对应的、必然的、因果的关系.(三)体会几何证明的新思路例1三角形中位线定理的证明.命题得证.-20-用心爱心专心三角形的中位线定理的证明在初中阶段已经学过,当时是利用添加辅助线的方法解决,如果没有教师的启发和引导,学

5、生很难想到添加辅助线的方法.现在我们借助平面直角坐标系以及相关的知识,回避了学习的难点,学生在使用解析法解完这个题之后,确有柳暗花明又一村的感觉.例2证明:三角形的三条高线交于一点.用代数的方法研究几何图形的性质,首先要建立平面直角坐标系.坐标系建立的方式也是有讲究的,我们的原则是在坐标系建立之后,尽可能的使研究对象的坐标、方程简捷.例2中,可以以A为坐标原点,AB所在的直线为x轴,建立如图坐标系.此外我们也可以以AB所在的直线为x轴,过点C与AB垂直的直线为y轴,建立如图坐标系.无论是第一种建立坐标系的方法还是第二种建立坐标系的方法,都是使得三角形的三个顶

6、点的坐标中,0出现的次数比较多,这样运算起来就很简捷.命题得证.-20-用心爱心专心通过以上两个例题,学生对解析几何的基本思想“用代数的方法研究几何图形的性质”可以有一个初步的、直观的认识.(四)教学内容的重点、难点本讲的教学重点是:直线的方程、圆的方程;从知识结构图中我们可以看出,本讲的知识主要是三个方面.其一是两点间的距离公式、线段的中点的坐标公式等与直角坐标系有关的基础公式;其二是直线方程的有关知识;其三是与圆的方程有关的知识.对于直线方程的几种形式,课程标准的要求是:掌握点斜式、两点式及一般式,体会斜截式,根据我们的教学实践,建议让学生掌握:点斜式、

7、斜截式、截距式、一般式.对于两点式可以略讲,在实际的应用过程中,两点式的问题都可以转化为点斜式,而截距式有其使用方便的特点,建议有条件的班级,教师可以予以补充.对于圆的方程的学习,课程标准的要求是:掌握圆的标准方程与一般方程.在这个内容的要求上,建议遵循课程标准的要求,不建议对课程标准的内容进行增删.有些教师在教学中引导学生探求:以A(x1,y1)、B(x2,y2)两点为直径的圆的方程,这种做法我们认为是正确的,高中阶段引导学生探究问题,有助于培养学生的抽象概括能力,有助于学生思维能力的提高.这是体现素质教育的一种做法.但是如果要求学生记住这个结论,在今后的

8、解题中使用使用这个结论,无疑是加重了学生的学习负担,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。