八年级数学下册《18.2勾股定理的逆定理》教案3 (新版)沪科版.doc

八年级数学下册《18.2勾股定理的逆定理》教案3 (新版)沪科版.doc

ID:56413837

大小:19.50 KB

页数:3页

时间:2020-06-23

八年级数学下册《18.2勾股定理的逆定理》教案3 (新版)沪科版.doc_第1页
八年级数学下册《18.2勾股定理的逆定理》教案3 (新版)沪科版.doc_第2页
八年级数学下册《18.2勾股定理的逆定理》教案3 (新版)沪科版.doc_第3页
资源描述:

《八年级数学下册《18.2勾股定理的逆定理》教案3 (新版)沪科版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《18.2勾股定理的逆定理》教学目标1.了解证明勾股定理逆定理的方法.2.经历探索勾股定理逆定理证明的过程,培养学生克服困难的勇气和坚强的意志.3.培养学生与人合作、交流的团队意识.教学重点难点:教学重点:勾股定理逆定理的证明.教学难点:勾股定理逆定理在生活中的应用.教学过程一、创设问题情境,引入新课活动1:以下列各组线段为边长,能构成三角形的是____________(填序号),能构成直角三角形的是____________.①3,4,5②1,3,4③4,4,6④6,8,10⑤5,7,2⑥13,5,12⑦7,25,24设计意图:帮助

2、学生回忆构成三角形的条件和判定一个三角形为直角三角形的条件.师生行为:由学生自己独立完成,教师巡视学生填的结果.在此活动中,教师应重点关注:①学生是否熟练地完成填空;②学生是否积极主动地完成任务.生:能构成三角形的是:①③④⑥⑦,能构成直角三角形的是;①④⑥⑦二、讲授新课给出一组式子:32+42=52,82+62=102,152+82=172,242+102=262.(1)你能发现上面式子的规律吗?请你用发现的规律,给出第5个式子;(2)请你证明你所发现的规律.过程:观察式子,要注意这些式子中不变的形式,如等式两边每一项的指数为2,

3、等式左边是平方和的形式,右边是一个数的平方.很显然,我们发现的规律一定是“()2+()2=()2”的形式.然后再观察每一项与序号的关系,如32,82,152,242与序号有何关系,可知32=(22-1)2,82=(32-1)2,152=(42-1)2,242=(52-1)2;所以我们可推想,第—项一定是(n2-1)2.(其n>1,n为整数),同理可得第二项一定是(2n)2,等式右边一定是(n2+1)2(其中n>1,n为整数).(1)解:上面的式于是有规律的,即(n2-1)2+(2n)2=(n2+1)2(n为大于1的整数).第5个式子

4、是n=6时,即(62-1)2+(2×6)2=(62+1)2化简,得352+122=372.(2)证明:左边=(n2-1)2+(2n)2=(n4-2n2+1)+4n2=n4+2n2+1=(n2+1)2=右边,证毕.进一步让学生体会用勾股定理的逆定理,实现数和形的统一,第(3)题又让学生从一次从一般形式上去认识勾股数,如果能让学生熟记几组勾股数,我们在判断三角形的形状时,就可以避开很麻烦的运算.师生行为:先由学生独立完成,然后小组交流.教师应巡视学生解决问题的过程,对成绩较差的同学给予指导.在此活动中,教师应重点关注学生:①能否用勾股定

5、理的逆定理判断三角形的形状.②能否发现问题,反思后及时纠正.③能否积极主动地与同学交流意见.生:根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.解:(1)因为152+82=225+64=289,172=289,所以152+82=172,这个三角形是直角三角形.(2)因为132+142=169+196=365,152=225所以132+142≠152.这个三角形不是直角三角形.生:要证明它们是直角三角形的三边,首先应判断这三条线段是否组成三角形,然后再根据勾股定理的逆定理来判断它

6、们是否是直角三角形的三边长.三、巩固练习师:我们先来完成练习第1题.生:a2=c2-b2,移项得a2+b2=c2,所以根据勾股定理的逆定理,这三条线段组成的三角形是直角三角形.(1)判断以a=10,b=8,c=6为边组成的三角形是不是直角三角形.解:因为a2+b2=100+64=164≠c2,即a2+b2≠c2,所以由a,b,c不能组成直角三角形.请问:上述解法对吗?为什么?(2)已知:在△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm.求证:AB=AC.设计意图:这是利用勾股定理的逆定理解决实际问题的例子,

7、可以使学生进一步理解勾股定理的逆定理,体会数学与现实世界的联系.学生只要能用自己的语言表达清楚解决问题的过程即可.师生行为:先由学生独立完成,然后小组交流,讨论;教师巡视学生完成问题的情况,及时给予指导.在此活动中,教师应重点关注学生:①能否进一步理解勾股定理的逆定理,②能否用语言比较规范地书写过程,说明理由.③能否从中体验到学习的乐趣.生:例:分析:这是一个利用直角三角形的判定条件解决实际问题的例子.解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角.在△BCD中,BD2+BC2=25+

8、144=169=132=CD2,所以△BCD是直角三角形,∠DBC是直角.因此这个零件符合要求.四、课时小结问题:你对本节的内容有哪些认识,掌握勾股定理的逆定理及其应用,熟记几组勾股数.设计意图:这种形式的小结,激发了学生主动参与意识

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。