六足爬虫机器人.doc

六足爬虫机器人.doc

ID:56296917

大小:117.00 KB

页数:7页

时间:2020-06-10

六足爬虫机器人.doc_第1页
六足爬虫机器人.doc_第2页
六足爬虫机器人.doc_第3页
六足爬虫机器人.doc_第4页
六足爬虫机器人.doc_第5页
资源描述:

《六足爬虫机器人.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、本文的设计为六足爬虫机器人,机器人以锂电池为动力源,单片机为控制元件,伺服电机为执行部件,机器人采用三足着地进行运动,通过单片机对伺服电机的控制,机器人能够实现前进、后退等运动方式,三足着地运动方式保证了机器人能够平稳运行。伺服电机具有力量大,扭矩大,体积小,重量轻等特点。单片机产生20ms的PWM波形,通过软件改写脉冲的占空比,从而达到改变伺服电机角度的目的。1机器人运动分析1.1六足爬虫式机器人运动方案比较方案一:六足爬虫式机器人的每条腿都能单独完成抬腿、前进、后退运动。此方案的特点:每条腿都能自由活动,每条腿都能单独进行二自由度的运动。每条腿的灵活性好,更容易进行仿生

2、运动,六足爬虫机器人可以完成除要求外的很多动作,运动的视觉效果更好。由于每条腿能单独完成二自由度的运动,所以每条腿上要安装两个舵机,舵机使用数量大,舵机的安装难度加大,机械结构部分的制作相对复杂,又由于每个舵机都要有单独的信号控制,电路控制部分变得复杂了,控制程序也相应的变得复杂。方案二:六足爬虫式机器人采取三腿为一组的运动模式,且同一侧的前腿、后腿的前后转动由同一侧的中腿进行驱动。采用三腿为一组(一侧的前足、后足与另一侧的中足为一组)的运动方式,各条腿能够协调的进行运动,机器人的运动相对平稳。此方案特点:相比上述方案,个腿能够协调运动,在满足运动要求的情况下,舵机使用数量

3、少,节约成本。机器人运动平稳,控制、驱动部分都得到相应的简化,控制简单。选择此方案,机器人还可进行横向运动。两方案相比,选择方案二更合适。1.2六足爬虫式机器人运动状态分析1.2.1机器人运动步态分析六足爬虫式机器人的行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并向后蹬时,另外三条腿即抬起向前准备轮换。这种行走方式使六足爬虫式机器人运动相当稳定,任何时刻有三足着地,能够保持良好的平衡,并可以随时随地停息下来,因为其重心总是落在三角支架之内。三角步态行走运动原理:步行时把六条足分为两组,以身体一侧的前足、

4、后足与另一侧的中足作为一组,形成一个稳定的三角架支撑虫体,因此在同一时间内只有一组的三条足起行走作用:前足用爪固定物体后拉动虫体前进,中足用以支撑并举起所属一侧的身体,后足则推动虫体前进,同时使虫体转向,行走时虫体向前并稍向外转,三条足同时行动,然后再与另一组的三条足交替进行,两组足如此交替地摆动和支撑,从而实现昆虫的快速运动,其行走的轨迹线是一条锯齿状曲线。图2-1运动示意图机器人开始运动时,左侧的2号腿和右侧的4、6号腿抬起准备向前摆动,另外3条腿1、3、5处于支撑状态,支撑机器人本体确保机器人的原有重心位置处于3条支撑腿所构成的三角形内,使机器人处于稳定状态不至于摔倒

5、(见图2-1(a),摆动腿2、4、6向前跨步(见图2-1(b),支撑腿1、3、5一面支撑机器人本体,一面在驱动装置作用下驱动机器人本体,使机器人机体向前运动了半个步长!(见图2-1(c))。在机器人机体移动到位时,摆动腿2、4、6立即放下,呈支撑态,使机器人的重心位置处于2、4、6三条支撑腿所构成的三角形稳定区内,原来的支撑腿1、3、5已抬起并准备向前跨步(见图2-1(d)),摆动腿1、3、5向前跨步(见图2-1(e)),支撑腿2、4、6此时一面支撑机器人本体,一面驱动机器人本体,使机器人机体又向前运动了半个步长(见图2-1(f)),如此不断从步态(a)、(b)、(c)、(

6、d)、(e)、(f)、(a),循环往复,周而复始实现机器人不断向前运动。这样的六组爬虫机器人每向前跨一步即行走一个步长的距离,也就是三角步态的的行走原理。占空系数β又称有荷因数,占空系数(或负载因数)是信号在一个周期内触发电平以下或以上的时间百分比。步态设计是实现步行的关键之一,为达到较为理想的步行,本文所研究的六足机器人的步态是β=0.5时的状态;在其中的三条摆动腿着地的同时,另外三支支撑腿立即抬起,即任意时刻同时只有支撑相或摆动相。这样能够使机器人的行进过程比较连续,而且比较稳定。在机器人遇到障碍物时,通过传感器和电路控制装置,可以控制电动机的旋转方向,使得两侧的电机的

7、旋转方向相反,从而使机器人转向。图2-2机器人转弯时的步态图具体的控制过程如下(向右偏转):1)使控制足1、足2和足3的电机反转,如图2-2(a)所示(图2-2中实线代表着地,虚线代表悬空);2)这时足1、足3、足4和足6准备悬空,只有足2、足5是准备抓紧地面的,3)在这一瞬间只有两个足着地,机器人处于不稳定状态,直到有四只足着地,使机器人重新回到稳定状态,由于该不稳定状态的时间非常短暂,并不影响机器人行走稳定的性能。向左偏转的情况机理也是一样的,只要使控制足4、足5、足6一侧的电机反转就可以了。1.3机器人平衡性

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。