动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版.doc

ID:56234221

大小:4.23 MB

页数:34页

时间:2020-03-22

动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版.doc_第1页
动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版.doc_第2页
动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版.doc_第3页
动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版.doc_第4页
动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版.doc_第5页
资源描述:

《动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、导轨与导体棒问题一、单棒问题【典例1】如图所示,AB杆受一冲量作用后以初速度v0=4m/s沿水平面内的固定轨道运动,经一段时间后而停止.AB的质量为m=5g,导轨宽为L=0.4m,电阻为R=2Ω,其余的电阻不计,磁感强度B=0.5T,棒和导轨间的动摩擦因数为μ=0.4,测得杆从运动到停止的过程中通过导线的电量q=10﹣2C,求:上述过程中(g取10m/s2)(1)AB杆运动的距离;(2)AB杆运动的时间;(3)当杆速度为2m/s时,其加速度为多大?【答案】(1)0.1m;(2)0.9s;(3)12m/s2.(2)根据动

2、量定理有:﹣(F安t+μmgt)=0﹣mv0而F安t=BLt=BLq,得:BLq+μmgt=mv0,解得:t=0.9s(3)当杆速度为2m/s时,由感应电动势为:E=BLv安培力为:F=BIL,而I=然后根据牛顿第二定律:F+μmg=ma代入得:解得加速度:a=12m/s2,25.(20分)如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。如图(b),已知管道中固定着两根平行金属导轨MN、PQ,两导轨间距为r;运输车的质量为m,横截面

3、是半径为r的圆。运输车上固定着间距为D、与导轨垂直的两根导体棒1和2,每根导体棒的电阻为R,每段长度为D的导轨的电阻也为R。其他电阻忽略不计,重力加速度为g。(1)如图(c),当管道中的导轨平面与水平面成θ=30°时,运输车恰好能无动力地匀速下滑。求运输车与导轨间的动摩擦因数μ;(2)在水平导轨上进行实验,不考虑摩擦及空气阻力。①当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒1、2均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。求刚接通电源时运输车的加速度的大

4、小;(电源内阻不计,不考虑电磁感应现象)②当运输车进站时,管道内依次分布磁感应强度为B,宽度为D的匀强磁场,且相邻的匀强磁场的方向相反。求运输车以速度vo从如图(e)通过距离D后的速度v。【典例3】如图所示,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab.导轨的一端连接电阻R,其他电阻均不计,磁感应强度为B的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下由静止开始向右运动.则(  )A.随着ab运动速度的增大,其加速度也增大B.外力F对ab做的功等于电路中产生的电能C.当ab做匀速运动时,外力F做功的

5、功率等于电路中的电功率D.无论ab做何种运动,它克服安培力做的功一定等于电路中产生的电能【答案】CD【典例4】一个闭合回路由两部分组成,如图所示,右侧是电阻为r的圆形导线,置于竖直方向均匀变化的磁场B1中,左侧是光滑的倾角为θ的平行导轨,宽度为d,其电阻不计.磁感应强度为B2的匀强磁场垂直导轨平面向上,且只分布在左侧,一个质量为m、电阻为R的导体棒此时恰好能静止在导轨上,分析下述判断正确的是(  )A.圆形导线中的磁场,可以方向向上且均匀增强,也可以方向向下且均匀减弱B.导体棒ab受到的安培力大小为mgsinθC.回路

6、中的感应电流为D.圆形导线中的电热功率为(r+R)【答案】ABC【解析】根据左手定则,导体棒上的电流从b到a,根据电磁感应定律可得A项正确;根据共点力平衡知识,导体棒ab受到的安培力大小等于重力沿导轨向下的分力,即mgsinθ,B项正确;根据mgsinθ=B2Id,解得I=,C项正确;圆形导线的电热功率P=I2r=()2r=r,D项错误.【典例4】如图甲所示,两根足够长平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为α,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m。导轨处于匀强磁

7、场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B。金属导轨的上端与开关S、定值电阻R1和电阻箱R2相连。不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g。现在闭合开关S,将金属棒由静止释放。(1)判断金属棒ab中电流的方向;(2)若电阻箱R2接入电路的阻值为0,当金属棒下降高度为h时,速度为v,求此过程中定值电阻上产生的焦耳热Q;(3)当B=0.40T,L=0.50m,α=37°时,金属棒能达到的最大速度vm随电阻箱R2阻值的变化关系,如图乙所示。取g=10m/s2,sin37°=0.60,cos37°=0

8、.80。求R1的阻值和金属棒的质量m。【答案】 (1)b→a (2)mgh-mv2 (3)2.0Ω 0.1kg(3)金属棒达到最大速度vm时,切割磁感线产生的感应电动势:E=BLvm由闭合电路的欧姆定律得:I=从b端向a端看,金属棒受力如图所示金属棒达到最大速度时,满足:mgsinα-BIL=0由以上三式得vm=(R2+R1)由图

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《动量定理、动量守恒在电磁感应中导轨与导体棒的应用—解析版.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、导轨与导体棒问题一、单棒问题【典例1】如图所示,AB杆受一冲量作用后以初速度v0=4m/s沿水平面内的固定轨道运动,经一段时间后而停止.AB的质量为m=5g,导轨宽为L=0.4m,电阻为R=2Ω,其余的电阻不计,磁感强度B=0.5T,棒和导轨间的动摩擦因数为μ=0.4,测得杆从运动到停止的过程中通过导线的电量q=10﹣2C,求:上述过程中(g取10m/s2)(1)AB杆运动的距离;(2)AB杆运动的时间;(3)当杆速度为2m/s时,其加速度为多大?【答案】(1)0.1m;(2)0.9s;(3)12m/s2.(2)根据动

2、量定理有:﹣(F安t+μmgt)=0﹣mv0而F安t=BLt=BLq,得:BLq+μmgt=mv0,解得:t=0.9s(3)当杆速度为2m/s时,由感应电动势为:E=BLv安培力为:F=BIL,而I=然后根据牛顿第二定律:F+μmg=ma代入得:解得加速度:a=12m/s2,25.(20分)如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。如图(b),已知管道中固定着两根平行金属导轨MN、PQ,两导轨间距为r;运输车的质量为m,横截面

3、是半径为r的圆。运输车上固定着间距为D、与导轨垂直的两根导体棒1和2,每根导体棒的电阻为R,每段长度为D的导轨的电阻也为R。其他电阻忽略不计,重力加速度为g。(1)如图(c),当管道中的导轨平面与水平面成θ=30°时,运输车恰好能无动力地匀速下滑。求运输车与导轨间的动摩擦因数μ;(2)在水平导轨上进行实验,不考虑摩擦及空气阻力。①当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒1、2均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。求刚接通电源时运输车的加速度的大

4、小;(电源内阻不计,不考虑电磁感应现象)②当运输车进站时,管道内依次分布磁感应强度为B,宽度为D的匀强磁场,且相邻的匀强磁场的方向相反。求运输车以速度vo从如图(e)通过距离D后的速度v。【典例3】如图所示,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab.导轨的一端连接电阻R,其他电阻均不计,磁感应强度为B的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下由静止开始向右运动.则(  )A.随着ab运动速度的增大,其加速度也增大B.外力F对ab做的功等于电路中产生的电能C.当ab做匀速运动时,外力F做功的

5、功率等于电路中的电功率D.无论ab做何种运动,它克服安培力做的功一定等于电路中产生的电能【答案】CD【典例4】一个闭合回路由两部分组成,如图所示,右侧是电阻为r的圆形导线,置于竖直方向均匀变化的磁场B1中,左侧是光滑的倾角为θ的平行导轨,宽度为d,其电阻不计.磁感应强度为B2的匀强磁场垂直导轨平面向上,且只分布在左侧,一个质量为m、电阻为R的导体棒此时恰好能静止在导轨上,分析下述判断正确的是(  )A.圆形导线中的磁场,可以方向向上且均匀增强,也可以方向向下且均匀减弱B.导体棒ab受到的安培力大小为mgsinθC.回路

6、中的感应电流为D.圆形导线中的电热功率为(r+R)【答案】ABC【解析】根据左手定则,导体棒上的电流从b到a,根据电磁感应定律可得A项正确;根据共点力平衡知识,导体棒ab受到的安培力大小等于重力沿导轨向下的分力,即mgsinθ,B项正确;根据mgsinθ=B2Id,解得I=,C项正确;圆形导线的电热功率P=I2r=()2r=r,D项错误.【典例4】如图甲所示,两根足够长平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为α,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m。导轨处于匀强磁

7、场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B。金属导轨的上端与开关S、定值电阻R1和电阻箱R2相连。不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g。现在闭合开关S,将金属棒由静止释放。(1)判断金属棒ab中电流的方向;(2)若电阻箱R2接入电路的阻值为0,当金属棒下降高度为h时,速度为v,求此过程中定值电阻上产生的焦耳热Q;(3)当B=0.40T,L=0.50m,α=37°时,金属棒能达到的最大速度vm随电阻箱R2阻值的变化关系,如图乙所示。取g=10m/s2,sin37°=0.60,cos37°=0

8、.80。求R1的阻值和金属棒的质量m。【答案】 (1)b→a (2)mgh-mv2 (3)2.0Ω 0.1kg(3)金属棒达到最大速度vm时,切割磁感线产生的感应电动势:E=BLvm由闭合电路的欧姆定律得:I=从b端向a端看,金属棒受力如图所示金属棒达到最大速度时,满足:mgsinα-BIL=0由以上三式得vm=(R2+R1)由图

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭