欢迎来到天天文库
浏览记录
ID:56172623
大小:691.50 KB
页数:6页
时间:2020-06-20
《2020年高考数学(理)二轮复习讲练测 专题22 几何体的表面积与体积的求解(讲)(原卷版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题22几何体的表面积与体积的求解从近几年的考试题来看,空间几何体的表面积、体积等问题是高考的热点,题型既有选择题、填空题,又有解答题,难度为中、低档.客观题主要考查由三视图得出几何体的直观图,求其表面积、体积或由几何体的表面积、体积得出某些量;主观题考查较全面,考查线、面位置关系,及表面积、体积公式,无论是何种题型都考查学生的空间想象能力.预测2018年高考仍将以空间几何体的面积、体积为主要考查点,重点考查学生的空间想象能力、运算能力及逻辑推理能力.1几何体的表面积(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元
2、素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.1.1多面体的表面积【例】【安徽省黄山市2020届高三一模)】一个三棱柱的三视图如图所示,则该三棱柱的侧面积为()A.B.24C.D.【例】一个多面体的三视图如图所示,则该多面体的表面积为A.B.C.D.1.2旋转体的表面积【例】【2020年上海市浦东新区高考一模】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A.20πB.24πC.28π
3、D.32π【例】一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的表面积与球O的表面积的比值为________.2几何体的体积1.求体积常见技巧当给出的几何体比较复杂,有关的计算公式无法运用,或者虽然几何体并不复杂,但条件中的已知元素彼此离散时,我们可采用“割”、“补”的技巧,化复杂几何体为简单几何体(柱、锥、台),或化离散为集中,给解题提供便利.(1)几何体的“分割”:几何体的分割即将已知的几何体按照结论的要求,分割成若干个易求体积的几何体,进而求之.(2)几何体的“补形”:与分割一样,有时为了计算方便,可将几何体补成易求体积的几何体,如长方体
4、、正方体等.另外补台成锥是常见的解决台体侧面积与体积的方法,由台体的定义,我们在有些情况下,可以将台体补成锥体研究体积.(3)有关柱、锥、台、球的面积和体积的计算,应以公式为基础,充分利用几何体中的直角三角形、直角梯形求有关的几何元素.2.求体积常见方法①直接法(公式法);②转移法:利用祖暅原理或等积变化,把所求的几何体转化为与它等底、等高的几何体的体积;③分割法求和法:把所求几何体分割成基本几何体的体积;④补形法:通过补形化归为基本几何体的体积;⑤四面体体积变换法;⑥利用四面体的体积性质:(ⅰ)底面积相同的两个三棱锥体积之比等于其底面积的比;(ⅱ)高相同的两个三棱锥体积
5、之比等于其底面积的比;(ⅲ)用平行于底面的平面去截三棱锥,截得的小三棱锥与原三棱锥的体积之比等于相似比的立方.求多面体体积的常用技巧是割补法(割补成易求体积的多面体.补形:三棱锥三棱柱平行六面体;分割:三棱柱中三棱锥、四棱锥、三棱柱的体积关系是1:2:3和等积变换法(平行换点、换面)和比例(性质转换)法等.3.常见的特殊几何体的性质2.1几何体的体积给出几何体的三视图,求该几何体的体积或表面积时,可以根据三视图还原出实物,画出该几何体的直观图,确定该几何体的结构特征,并利用相应的体积公式求出其体积,求体积的方法有直接套用公式法、等体积转换法和割补法等多种.若所给几何体为不
6、规则几何体,常用等积转换法和割补法求解.【例】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.B.C.D.【例】【福建省泉州市2020届高三质检】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为A.B.C.D.【例】设,,,是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A.B.C.D.【例】如图,在四棱锥中,底面是菱形,平面平面,且,,为的中点,.(1)求证:平面;(2)求三棱锥的体积.2.2关于球的切、接问题解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关
7、系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【例】【2020届陕西省西安市高三上学期期末】《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知“堑堵”的所有顶点都在球的球面上,且,若球的表面积为,则这个三棱柱的体积是()A.B.C.D.1【例】在封闭的正三棱柱ABC-A1B1C1内有一个体积为V的球.若AB=6,AA1=4,则V的最大值是()A.16πB.C.12πD.【例】【2020届河北省唐山市高三上学期期末】已知过球
此文档下载收益归作者所有