2012高考物理专题复习07 功和能.doc

2012高考物理专题复习07 功和能.doc

ID:56085304

大小:1.12 MB

页数:8页

时间:2020-06-19

2012高考物理专题复习07 功和能.doc_第1页
2012高考物理专题复习07 功和能.doc_第2页
2012高考物理专题复习07 功和能.doc_第3页
2012高考物理专题复习07 功和能.doc_第4页
2012高考物理专题复习07 功和能.doc_第5页
资源描述:

《2012高考物理专题复习07 功和能.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、功和能典型例题图1【例题1】如图1所示,轻绳下悬挂一小球,在小球沿水平面作半径为R的匀速圆周运动转过半圈的过程中,下列关于绳对小球做功情况的叙述中正确的是()A.绳对小球没有力的作用,所以绳对小球没做功;B.绳对小球有拉力作用,但小球没发生位移,所以绳对小球没做功;C.绳对小球有沿绳方向的拉力,小球在转过半圈的过程中的位移为水平方向的2R,所以绳对小球做了功;D.以上说法均不对.【分析与解】从表面上看似乎选项C说得有道理,但事实上由于绳对小球的拉力是方向不断变化的变力,而变力做功与否的判断应该这样来进行:在小球转过半圆周的过程中任取一小段圆弧,经考察发现小球在通过这

2、一小段圆弧时所受拉力方向与这一小段位移垂直,因此可以断定在小球通过每一小段圆弧时绳均不对小球做功,由此可知此例应选D.【例题2】把两个大小相同的实心铝球和实心铁球放在同一水平面上,它们的重力势能分别为和.若把它们移至另一个较低的水平面上时,它们的重力势能减少量分别为和则必有()A.<B.>C.<D.>图2【分析与解】如果重力势能的零势面比两球所处的水平面较低,则显然由于铁的密度较大,同体积的铁球质量较大而使<;但如就取两球心所在的水平面为重力势能零势面,则又有==0;当然若两球所在的水平面在重力势能的零势面下方,甚至可以有<<0.考虑到重力势能的“相对性”,选项A、

3、B均不应选.但无论重力势能的零势面如何选取,在两球下降相同高度的过程中,质量较大的铁球所减少的重力势能都是较多的,所以此例应选择C.【例题3】如图10-2所示,质量分别为、的小球、分别固定在长为的轻杆两端,轻杆可绕过中点的水平轴在竖直平面内无摩擦转动,当杆处于水平时静止释放,直至杆转到竖直位置的过程中,杆对小球所做的功为.杆对小球所做的功为.【分析与解】在此过程中由于、构成的系统的机械能守恒,因此系统减少的重力势能应与系统增加的动能相等.即-8-用心爱心专心由此解得、两球转到杆处于竖直位置时的速度大小为而在此过程中、两球的机械能的增加量分别为所以,此过程中轻杆对A、

4、B两小球所做的功分别为图3【例题4】放在光滑水平面上的长木板,右端用细线系在墙上,如图3所示,左端固定一个轻弹簧,质量为的小球,以某一初速度在光滑木板上表面向左运动,且压缩弹簧,当球的速度减小为初速的一半时,弹簧势能为,这时细线被拉断,为使木板获得的动能最大,木板的质量应等于多少?其最大动能为多少?【分析与解】先进行状态分析,当小球碰到弹簧后,小球将减速,当球的速度减小为初速的一半时,弹簧势能为,即表示:细线断后,小球继续减速,木板加速,且弹簧不断伸长,以整体来看,系统的机械能守恒,若小球的速度减小为0时,弹簧恰好变成原长状态,则全部的机械能就是木板的动能,此时木板

5、获得的动能最大.系统所受的合外力为0,故动量守恒,且解得,.图4【例题5】一个竖直放置的光滑圆环,半径为,、、、-8-用心爱心专心分别是其水平直径和竖直直径的端点.圆环与一个光滑斜轨相接,如图4所示.一个小球从与点高度相等的点从斜轨上无初速下滑.试求:(1)过点时,对轨道的压力多大?(2)小球能否过点,如能,在点对轨道压力多大?如不能,小球于何处离开圆环?【分析与解】小球在运动的全过程中,始终只受重力和轨道的弹力.其中,是恒力,而是大小和方向都可以变化的变力.但是,不论小球是在斜轨上下滑还是在圆环内侧滑动,每时每刻所受弹力方向都与即时速度方向垂直.因此,小球在运动的

6、全过程中弹力不做功,只有重力做功,小球机械能守恒.从小球到达圆环最低点开始,小球就做竖直平面圆周运动.小球做圆周运动所需的向心力总是指向环心点,此向心力由小球的重力与弹力提供.(1)因为小球从到机械能守恒,所以①②③解①②③得(2)小球如能沿圆环内壁滑动到点,表明小球在点仍在做圆周运动,则,可见,是恒量,随着的减小减小;当已经减小到零(表示小球刚能到达)点,但球与环顶已是接触而无挤压,处于“若即若离”状态)时,小球的速度是能过点的最小速度.如小球速度低于这个速度就不可能沿圆环到达点.这就表明小球如能到达点,其机械能至少应是,但是小球在点出发的机械能仅有<因此小球不可

7、能到达点.又由于,即因此,>0,小球从到点时仍有沿切线向上的速度,所以小球一定是在、之间的某点离开圆环的.设半径与竖直方向夹角,则由图可见,小球高度④根据机械能守恒定律,小球到达点的速度应符合:-8-用心爱心专心图5⑤小球从点开始脱离圆环,所以圆环对小球已无弹力,仅由重力沿半径方向的分力提供向心力,即⑥解④⑤⑥得故小球经过圆环最低点时,对环的压力为.小球到达高度为的点开始脱离圆环,做斜上抛运动.【说明】1.小球过竖直圆环最高点的最小速度称为“临界速度”.的大小可以由重力全部提供向心力求得,即小球到达点,当>时,小球能过点,且对环有压力;当=时,小球刚能过点,且对

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。