资源描述:
《河北狮州中学2017_2018学年高二数学下学期第一次月考试题承智班.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、河北省定州中学2017-2018学年高二数学下学期第一次月考试题(承智班)一、单选题1.已知函数的周期为4,且当时,其中.若方程恰有3个实数解,则的取值范围为A.B.C.D.2.已知函数是定义在上的奇函数,且当时,,则对任意,函数的零点个数至多有A.3个B.4个C.6个D.9个3.已知抛物线:的焦点为,过点分别作两条直线,,直线与抛物线交于、两点,直线与抛物线交于、两点,若与的斜率的平方和为1,则的最小值为()A.16B.20C.24D.324.我们把由半椭圆与半椭圆合成的曲线称作“果圆”(其中).
2、如图,设点是相应椭圆的焦点,和是“果圆”与轴的交点,若是边长为的等边三角,则的值分别为()A.B.C.D.-7-5.若函数在区间内单调递增,则a的取值范围是()A.B.C.D.6.Q是椭圆上一点,为左、右焦点,过F1作外角平分线的垂线交的延长线于点,当点在椭圆上运动时,点的轨迹是()A.直线B.圆C.椭圆D.双曲线7.已知抛物线,圆.过点的直线交圆于两点,交抛物线于两点,且满足的直线恰有三条,则的取值范围为()A.B.C.D.8.数列满足,且对任意的都有,则等于()A.B.C.D.9.直线与双曲线的
3、渐近线交于两点,设为双曲线上任一点,若为坐标原点),则下列不等式恒成立的是( )A.B.C.D.10.设双曲线的左焦点,过的直线交双曲线的左支于(在的上方)两点,轴,,若为钝角,则双曲线的离心率的取值范围是()-7-A.B.C.D.11.已知函数的两个极值点分别在与内,则的取值范围是A.B.C.D.12.已知表示正整数的所有因数中最大的奇数,例如:12的因数有1,2,3,4,6,12,则;21的因数有1,3,7,21,则,那么的值为()A.2488B.2495C.2498D.2500二、填空题13
4、.定义在上的函数满足且,又当且时,有.若对所有恒成立,则实数的取值范围是____.14.函数(),,对,,使成立,则的取值范围是__________.15.已知三个数,,成等比数列,其倒数重新排列后为递增的等比数列的前三项,则能使不等式成立的自然数的最大值为__________.16.对于三次函数,给出定义:设是的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数,则-7-______
5、____.三、解答题17.已知是抛物线:()上一点,是抛物线的焦点,且.(1)求抛物线的方程;(2)已知,过的直线交抛物线于、两点,以为圆心的圆与直线相切,试判断圆与直线的位置关系,并证明你的结论.18.已知函数,.(1)令,讨论函数的单调性;(2)若对任意,都有恒成立,求实数的取值范围.-7-参考答案AACABBCCCA11.A12.D13.(-∞,-2]∪{0}∪[2,+∞)14.15.716.17.(1)抛物线的方程为;(2)圆与直线相切.(1)抛物线:()的准线方程为:,过作于点,连接,则,
6、∵,∴为等边三角形,∴,∴.∴抛物线的方程为.(2)直线的斜率不存在时,为等腰三角形,且.∴圆与直线相切.直线的斜率存在时,设方程为,代入抛物线方程,得,设,,则.直线的方程为,即,∴圆的半径满足.同理,直线的方程为,-7-到直线的距离,.∴,∴,∴圆与直线相切,综上所述,圆与直线相切.18.(1)时,在递增,递减;时,在递增;时,在和递增,递减;时,在和递增,递减;(2).(1)解:h(x)=f(x)-g(x)=,定义域为,(x>0)a0时,>0得x>1;<0得07、增,(0,1)递减a=1时,,所以h(x)在(0,)递增00得01;<0得a1时,>0得0a;<0得11时,h(x)在(0,1)和(a,)递增,(1,a)递减(2)若任意,都
8、有恒成立。令h(x)=f(x)-g(x),-7-只需即可由(1)知,时,h(x)在递增,=h(1)=4-a0,解得a4.又,所以,ae时,h(x)在递减,=h(e)=解得,又ae,所以,1