欢迎来到天天文库
浏览记录
ID:55993044
大小:641.50 KB
页数:5页
时间:2020-03-15
《期末综合复习卷(四)答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、期末综合复习卷(四)答案一.选择题学号____姓名__________1.下列说法正确的是()A.平行于同一平面的两直线平行.B.两平行线中一条平行于一平面,则另一条也平行.C.一个平面上有三点到另一个平距离相等,则两两平面平行.D.一条直线与一个平面内无数条直线都垂直,则此直线和平面的三种位置关系皆有可能.2.若直线b不平行平面,则()A.内的所有直线都与直线b异面B.内不存在与b平行的直线C.内的直线都与b相交D.直线b与平面有公共点3.设,则是的(C).A.充分非必要条件B.充要条件C.必要非充分条件
2、D.既不充分也不必要条件4.已知空间两条不同的直线和两个不同的平面,则下列命题中正确的是(D)A.若∥∥B.若C.若∥∥∥D.若∥∥[来源5.已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为,直径为4的球的体积为,则()A.B.C.D.Z6.已知,分别是双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于、两点.若是等边三角形,则该双曲线的离心率为(B)A.2B.C.D.7.如图,在正四棱锥中,分别是的中点,动点在线段上运动时,下列四个结论:①;②;③;④.中恒成立的为(A)(A
3、)①③(B)③④(C)①②(D)②③④A.PDCB第8题图8.如图,设为正四面体表面(含棱)上与顶点不重合的一点,由点到四个顶点的距离组成的集合记为,如果集合中有且只有个元素,那么符合条件的点有(C)A.个B.个C.个D.个9.若点O和点F(-2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为(B)(A)(B)(C)(D)10.球O为边长为2的正方体ABCD-A1B1C1D1的内切球,P为球O的球面上动点,M为B1C1中点,,则点P的轨迹周长为().A.B.C.D.11.抛物线
4、的焦点到准线的距离为_____12.设直线l1:的倾斜角为,直线的倾斜角为,且,则m的值为_______-2__.13.已知三棱锥中,,,则直线与底面所成角为______60___.14.已知命题p:“对任意的”,命题q:“存在”若命题“p且q”是真命题,则实数的取值范围是.15.已知直线l的方程是,A,B是直线l上的两点,且△OAB是正三角形(O为坐标原点),则△OAB外接圆的方程是_______.16.梯形内接于抛物线,其中,且∥,设直线的斜率为,则1.17.函数与函数的图象的两个交点为,则-1.18.
5、己知集合,,,若“”是“”的充分不必要条件,求的取值范围.19.已知圆C与圆相外切,并和直线相切于点,求圆C的方程20.四棱锥如图放置,,,,为等边三角形.(Ⅰ)证明:;(Ⅱ)求二面角的平面角的余弦值.21.已知椭圆M:的左右顶点分别为D、C,过点且斜率不为0的直线与椭圆M交于A、B两点,设,(Ⅰ)求的值;(Ⅱ)若直线AC与BD相交于点E,证明:点E的横坐标为定值。(1)(2)xOP(第22题图)MyFQAN22.如图,设椭圆(a>b>0)的右焦点为F(1,0),A为椭圆上顶点,椭圆上点到右焦点的最短距离为
6、-1.过F作椭圆的弦PQ,直线AP,AQ分别交直线x-y-2=0于点M,N.(Ⅰ)求椭圆的方程;(Ⅱ)求当
7、MN
8、最小时直线PQ的方程.(1)(2)不存在时,1820.解法1:(Ⅰ)易知在梯形中,,而,则同理,故;……6分(Ⅱ)取中点,连,作,垂足为,再作,连。易得,则于是,即二面角的平面角。在中,∴,故二面角的平面角的余弦值为…………14分
此文档下载收益归作者所有