资源描述:
《最新人教版七年级数学(下册)(全册)教(学)案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、..5.1.1相交线教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认. 2.掌握对顶角相等的性质和它的推证过程. 3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学反思教学过程一、创设情境,引入课题先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,
2、这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.二、探究新知,讲授新课.下载可编辑...1.对顶角和邻补角的概念 学生活动:观察上图,同桌讨论,教师统一学生观点并板书. 【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角. 学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两
3、个角? 学生口答:∠2和∠4再也是对顶角. 紧扣对顶角定义强调以下两点: (1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行. (2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质 提出问题:我们在
4、图形中能准确地辨认对顶角,那么对顶角有什么性质呢? 学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么. 【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),.下载可编辑... ∴∠l=∠3(同角的补角相等). 注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义. 或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义), ∴∠1=∠3(等量代换). 学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题
5、过程,请一个学生板演。 解:∠3=∠1=40°(对顶角相等). ∠2=180°-40°=140°(邻补角定义). ∠4=∠2=140°(对顶角相等).三、范例学习学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题. 变式1:把∠l=40°变为∠2-∠1=40° 变式2:把∠1=40°变为∠2是∠l的3倍 变式3:把∠1=40°变为∠1:∠2=2:9四、课堂小结学生活动:表格中的结论均由学生自己口答填出..下载可编辑...角的名称特征性质相同点不同点对顶角①两
6、条直线相交面成的角②有一个公共顶点③没有公共边对顶角相等都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个。邻补角①两条直线相交面成的角②有一个公共顶点③有一条公共边邻补角互补五、布置作业:课本P3练习.下载可编辑...5.1.2垂线(第一课时)教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.毛2.了解垂直概念,能说出垂线的性质“经过一点,
7、能画出已知直线的一条垂线,并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线.重点两条直线互相垂直的概念、性质和画法.教学反思教学过程一、创设问题情境1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象?在学生回答之后,教师指出:“垂直”两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容..下载可编辑...2.学生观察课本P3图5.1-4思考:固定木条a,转动木条,当b的位置变化时,a、b所成的角a是
8、如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等.3.师生共同给出垂直定义.师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。如果说两条直线“互相垂直”时,其中一条