欢迎来到天天文库
浏览记录
ID:55957372
大小:98.50 KB
页数:8页
时间:2020-06-18
《高中数学 直线和圆的方程课时教材素材-04.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、直线方程的一般形式一、教学目标 (一)知识教学点掌握直线方程的一般形式,能用定比分点公式设点后求定比.(二)能力训练点通过研究直线的一般方程与直线之间的对应关系,进一步强化学生的对应概念;通过对几个典型例题的研究,培养学生灵活运用知识、简化运算的能力.(三)学科渗透点通过对直线方程的几种形式的特点的分析,培养学生看问题一分为二的辩证唯物主义观点. 二、教材分析 1.重点:直线的点斜式、斜截式、两点式和截距式表示直线有一定的局限性,只有直线的一般式能表示所有的直线,教学中要讲清直线与二元一次方程的对应关系.2.难点:与重点相同.3.疑点:直线与二元一次方程是一对多的关系.同条直线对应的多
2、个二元一次方程是同解方程. 三、活动设计 分析、启发、讲练结合. 四、教学过程8用心爱心专心 (一)引入新课点斜式、斜截式不能表示与x轴垂直的直线;两点式不能表示与坐标轴平行的直线;截距式既不能表示与坐标轴平行的直线,又不能表示过原点的直线.与x轴垂直的直线可表示成x=x0,与x轴平行的直线可表示成y=y0。它们都是二元一次方程.我们问:直线的方程都可以写成二元一次方程吗?反过来,二元一次方程都表示直线吗?(二)直线方程的一般形式我们知道,在直角坐标系中,每一条直线都有倾斜角α.当α≠90°时,直线有斜率,方程可写成下面的形式:y=kx+b当α=90°时,它的方程可以写成x=x0的形式
3、.由于是在坐标平面上讨论问题,上面两种情形得到的方程均可以看成是二元一次方程.这样,对于每一条直线都可以求得它的一个二元一次方程,就是说,直线的方程都可以写成关于x、y的一次方程.反过来,对于x、y的一次方程的一般形式Ax+By+C=0. (1)其中A、B不同时为零.(1)当B≠0时,方程(1)可化为这里,我们借用了前一课y=kx+b表示直线的结论,不弄清这一点,会感到上面的论证不知所云.(2)当B=0时,由于A、B不同时为零,必有A≠0,方程(1)可化为8用心爱心专心它表示一条与y轴平行的直线.这样,我们又有:关
4、于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0这个方程(其中A、B不全为零)叫做直线方程的一般式.引导学生思考:直线与二元一次方程的对应是什么样的对应?直线与二元一次方程是一对多的,同一条直线对应的多个二元一次方程是同解方程.(三)例题解:直线的点斜式是化成一般式得4x+3y-12=0.把常数次移到等号右边,再把方程两边都除以12,就得到截距式讲解这个例题时,要顺便解决好下面几个问题:(1)直线的点斜式、两点式方程由于给出的点可以是直线上的任意点,因此是不唯一的,一般不作为最后结果保留,须进一步化简;(2)直线方程的一般式也是不唯一的,因为方程的两边同乘以一个非零常
5、数后得到的方程与原方程同解,一般方程可作为最终结果保留,但须化为各系数既无公约数也不是分数;(3)直线方程的斜截式与截距式如果存在的话是唯一的,如无特别要求,可作为最终结果保留.例2 把直线l的方程x-2y+6=0化成斜截式,求出直线l的斜率和在x轴与y轴上的截距,并画图.8用心爱心专心解:将原方程移项,得2y=x+6,两边除以2得斜截式:x=-6根据直线过点A(-6,0)、B(0,3),在平面内作出这两点连直线就是所要作的图形(图1-28).本例题由学生完成,老师讲清下面的问题:二元一次方程的图形是直线,一条直线可由其方向和它上面的一点确定,也可由直线上的两点确定,利用前一点作图比较
6、麻烦,通常我们是找出直线在两轴上的截距,然后在两轴上找出相应的点连线.例3 证明:三点A(1,3)、B(5,7)、C(10,12)在同一条直线上.证法一 直线AB的方程是:化简得 y=x+2.将点C的坐标代入上面的方程,等式成立.∴A、B、C三点共线.8用心爱心专心∴A、B、C三点共线.∵
7、AB
8、+
9、BC
10、=
11、AC
12、,∴A、C、C三点共线.讲解本例题可开拓学生思路,培养学生灵活运用知识解决问题的能力.例4 直线x+2y-10=0与过A(1,3)、 B(5,2)的直线相交于C,此题按常规解题思路可先用两点式求出AB的方程,然后解方程组得到点C的坐标,再求点C分AB所成的定比,计算量大了一
13、些.如果先用定比分点公式设出点C的坐标(即满足点C在直线AB上),然后代入已知的直线方程求λ,则计算量要小得多.代入x+2y-10=0有:解之得 λ=-3.(四)课后小结(1)归纳直线方程的五种形式及其特点.8用心爱心专心(2)例4一般化:求过两点的直线与已知直线(或由线)的交点分以这两点为端点的有向线段所成定比时,可用定比分点公式设出交点的坐标,代入已知直线(或曲线)求得.五、布置作业1.(1.6练习第1题)由下列条件,写出直线的方程,并化成
此文档下载收益归作者所有