欢迎来到天天文库
浏览记录
ID:55922396
大小:308.50 KB
页数:6页
时间:2020-06-15
《“PA+k·PB”型的最值问题(将军饮马、造桥选址、胡不归、阿氏圆、费马点).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、“PA+k·PB”型的最值问题当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“将军饮马”模型来处理,即可以转化为轴对称问题来处理。当k取任意不为1的正数时,通常以动点P所在图像的不同来分类,一般分为2类研究。其中点P在直线上运动的类型称之为“胡不归”问题;点P在圆周上运动的类型称之为“阿氏圆”问题。一、“将军饮马”模型“将军饮马”:把河岸看作直线L,先取A(或B)关于直线L的对称点A′(或B′),连接A′B(或B′A),并与直线交于一点P,则点P就是将军饮马的地点,即PA+PB即为最短路线
2、。例1.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是 。例2.如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△PAB=S矩形ABCD,则点P到A,B两点距离之和PA+PB的最小值为 .例3.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,△PMN的周长最小值为 ;当△PMN的周长取最小值时,四边形PMON的面积为 。变式:“造桥选址”模型例
3、4.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB的值为 。例5.如图,CD是直线y=x上的一条定长的动线段,且CD=2,点A(4,0),连接AC、AD,设C点横坐标为m,求m为何值时,△ACD的周长最小,并求出这个最小值。二、“胡不归”模型有一则历史故事:说的是一个身在他乡的小伙子,得知父亲病危的消息后便日夜赶路回家。然而,当他气喘吁吁地来到父
4、亲的面前时,老人刚刚咽气了。人们告诉他,在弥留之际,老人在不断喃喃地叨念:“胡不归?胡不归?”早期的科学家曾为这则古老的传说中的小伙子设想了一条路线。(如下图)A是出发地,B是目的地;AC是一条驿道,而驿道靠目的地的一侧是沙地。为了急切回家,小伙子选择了直线路程AB。但是,他忽略了在驿道上(V1)行走要比在砂土地带(V2)行走快的这一因素。如果他能选择一条合适的路线(尽管这条路线长一些,但速度可以加快),是可以提前抵达家门的。解题步骤:①将所求线段和改写为“BD+AD”的形式(0<<1);②在AD的一侧,BD的
5、异侧,构造一个角度α,使得sinα=;③过B作所构造的一边垂线,该垂线段即为所求最小值.例1.如图,△ABC中,BC=2,∠ABC=30°,则2AC+AB的最小值为 。例2.如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则AM+BM的最小值为 。例3.如图,等腰△ABC中,AB=AC=3,BC=2,BC边上的高为AO,点D为射线AO上一点,一动点P从点A出发,沿AD-DC运动,动点P在AD上运动速度3个单位每秒,动点P在CD上运动的速度为1个
6、单位每秒,则当AD=时,运动时间最短为秒。[中考真题]1.(2016•徐州)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图像经过点A(-1,0),B(0,-)、C(2,0),其中对称轴与x轴交于点D。若P为y轴上的一个动点,连接PD,则的最小值为 。2.(2014.成都)如图,已知抛物线与x轴从左至右依次交于点A、B,与y轴交于点C,经过点B的直线与抛物线的另一个交点为D(-5,)。设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿
7、线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标为 时,点M在整个运动过程中用时最少?三、“阿氏圆”模型【问题背景】阿氏圆又称阿波罗尼斯圆,已知平面上两点A、B,则所有满足PA=kPB(k≠1)的点P的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。如图所示2-1-1,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上的动点,已知r=k·OB.连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?图2-1-1图2-1-2图2-1-3本题的关键在于如何确定“k
8、·PB”的大小,(如图2-1-2)在线段OB上截取OC使OC=k·r,则可说明△BPO与△PCO相似,即k·PB=PC。∴本题求“PA+k·PB”的最小值转化为求“PA+PC”的最小值,即A、P、C三点共线时最小(如图2-1-3),本题得解。“阿氏圆”一般解题步骤:第一步:连接动点至圆心O(将系数不为1的线段两个端点分别与圆心相连接),则连接OP、OB;第二步:计算出所连接的这两条线段
此文档下载收益归作者所有