欢迎来到天天文库
浏览记录
ID:55767908
大小:336.50 KB
页数:19页
时间:2020-06-06
《基本人工鱼群算法.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、基本人工鱼群算法摘要人工鱼群算法(ArtificialFish-SwarmAlgorithm,AFSA)是由李晓磊等在2002年提出的,源于对鱼群运动行为的研究,是一种新型的智能仿生优化算法。它具有较强的鲁棒性、优良的分布式计算机制易于和其他方法结合等优点。目前对该算法的研究、应用已经渗透到多个应用领域,并由解决一维静态优化问题发展到解决多维动态组合优化问题。人工鱼群算法已经成为交叉学科中一个非常活跃的前沿性学科。本文主要对鱼群算法进行了概述,引入鱼群模式的概念,然后给出了人工鱼的结构,接下来总结出了人工鱼的寻优原理,并对人工鱼群算法的寻优过程进行仿真,通过四个标准函
2、数选取不同的拥挤度因子进行仿真实验,证实了利用人工鱼群算法进行全局寻优确实是有效的。关键词:人工鱼群算法;拥挤度因子;寻优0引言动物在进化过程中,经过漫长的优胜劣汰,形成了形形色色的觅食和生存方式,这些方式为人类解决生产生活中的问题带来了不少启发和灵感。动物不具备复杂逻辑推理能力和综合判断等高级智能,但他们通过个体的简单行为和相互影响,实现了群体的生存和进化。动物行为具有以下几个特点。(1)适应性:动物通过感觉器官来感知外界环境,并应激性的做出各种反应,从而影响环境,表现出与环境交互的能力。(2)自治性:在不同的时刻和不同的环境中能够自主的选取某种行为,而无需外界的控
3、制或指导。(3)盲目性:单个个体的行为是独立的,与总目标之间没有直接的关系。(4)突现性:总目标的完成是在个体行为的运动过程中突现出来的。(5)并行性:各个个体的行为是并行进行的。人工鱼群算法是根据鱼类的活动特点提出的一种基于动物行为的自治体寻优模式。1鱼群模式描述1.1鱼群模式的提出20世纪90年代以来,群智能(swarmintelligence,SI)的研究引起了众多学者的极大关注,并出现了蚁群优化、粒子群优化等一些著名的群智能方法。集群是生物界中常见的一种现象,如昆虫、鸟类、鱼类、微生物乃至人类等等。生物的这种特性是在漫长的进化过程中逐渐形成的,对其生存和进化有
4、着重要的影响,同时这些方式也为人类解决问题的思路带来不少启发和鼓舞。因此,近年来有不少科学家对生物行为进行了广泛研究,并逐渐形成了一种基于生物行为的人工智能模式。这种基于生物行为的人工智能模式与经典的人工智能模式是不同的,它不是采取自上而下的设计方法,而是采取自下而上的设计方法:首先设计单个实体的感知、行为机制,然后将一个或一群实体放置于环境中,让它们在与环境的交互作用中解决问题。它是内嵌的、物化的、自治的、突现的。一个集群通常定义为一群自治体的集合,他们利用相互直接或间接的通信,从而通过全体的活动来解决一些分布式难题。在这里,自治体是指在一个环境中具备自身活动能力的
5、一个实体,其自身力求简单,通常不必具有高级智能。但是,它们的集群活动所表现出来的则是一种高级智能才能达到的活动,这种活动可以称为集群智能。动物自治体通常指自主机器人或动物模拟实体,它主要用来展示动物在复杂多变的环境中能够自主产生自适应的智能行为的一种方式。自治体的行为受到环境的影响同时每一个自治体又是环境的构成因素。环境的下一个状态是当前状态和自治体活动的函数,自治体的下一个刺激是在环境的当前状态和其自身活动的函数,自治体的合理架构就是能在环境的刺激下做出最好的应激活动。将动物自治体的概念引入鱼群优化算法中,采用自下而上的设计思路,应用基于行为的人工智能方法,形成一种
6、新的解决问题的模式,因为是从分析鱼类活动而出发的,所以称为鱼群模式。该模式用于寻优中,形成人工鱼群算法。在一片水域中,鱼生存数目最多的地方一般就是该水域中富含营养物质最多的地方,依据这一点来模仿鱼群的觅食、群聚、追尾等行为,从而实现全局寻优,这就是人工鱼群算法的基本思想。1.2人工鱼的结构模型人工鱼(artificialfish,AF)是真实鱼的一个虚拟实体,用来进行问题的分析和说明。人工鱼的结构模型和行为描述可以借助面向对象的分析方法,如图1.1所示。可以认为人工鱼就是封装了自身数据和一系列行为的实体,可以通过感官来接收环境的刺激信息,并通过控制尾鳍来做出相应的应激
7、活动。图1.1人工鱼的结构人工鱼所在的环境主要是问题的解空间和其人工鱼的状态,它在下一刻的行为取决于目前自身状态和目前环境状态,并且它还通过自身活动来影响环境,进而影响其他同伴的活动。人工鱼对外界的感知是靠视觉来实现的。生物的视觉是极其复杂的,为了实施的简单有效,在人工鱼的模型中应用如下方法实现虚拟人工鱼的视觉。如图1.2所示,一条虚拟人工鱼当前状态为X,Visual为其视野范围状态为其某时刻视点所在的位置,若该位置的状态由于当前状态,则考虑向当前位置方向前进一步,即到达状态;若状态不比当前状态更优,则继续巡视视野内的其他位置。巡视的次数越多,对视野
此文档下载收益归作者所有