欢迎来到天天文库
浏览记录
ID:5575770
大小:121.50 KB
页数:8页
时间:2017-12-19
《高中数学竞赛讲义(16)平面几何》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、高中数学竞赛讲义(十六)──平面几何一、常用定理(仅给出定理,证明请读者完成)梅涅劳斯定理 设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则梅涅劳斯定理的逆定理 条件同上,若则三点共线。塞瓦定理 设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点,则塞瓦定理的逆定理 设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若则三线共点或互相平行。角元形式的塞瓦定理 分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点的充要条件是广义托勒密定理 设AB
2、CD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。斯特瓦特定理 设P为ΔABC的边BC上任意一点,P不同于B,C,则有8AP2=AB2?+AC2?-BP?PC.西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。蒙日定理 三条根轴交于一点或互相平行。(到两圆的
3、幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理 ΔABC的外心O,垂心H,重心G三点共线,且二、方法与例题1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。[证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP=∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦
4、定理有,②,③④8由②,③,④得。又因为P1,P2同在线段AQ上,所以P1,P2重合,又BP与CP仅有一个交点,所以P1,P2即为P,所以A,P,Q共线。2.面积法。例2 见图16-1,◇ABCD中,E,F分别是CD,BC上的点,且BE=DF,BE交DF于P,求证:AP为∠BPD的平分线。[证明] 设A点到BE,DF距离分别为h1,h2,则又因为S◇ABCD=SΔADF,又BE=DF。所以h1=h2,所以PA为∠BPD的平分线。3.几何变换。例3 (蝴蝶定理)见图16-2,AB是⊙O的一条弦,M为AB中点
5、,CD,EF为过M的任意弦,CF,DE分别交AB于P,Q。求证:PM=MQ。[证明] 由题设OMAB。不妨设。作D关于直线OM的对称点。连结,则要证PM=MQ,只需证,又∠MDQ=∠PFM,所以只需证F,P,M,共圆。因为∠=1800-=1800-∠=1800-∠。(因为OM。AB//)所以F,P,M,四点共圆。所以Δ≌ΔMDQ。所以MP=MQ。8例4 平面上每一点都以红、蓝两色之一染色,证明:存在这样的两个相似三角形,它们的相似比为1995,而且每个三角形三个顶点同色。[证明] 在平面上作两个同心圆,半
6、径分别为1和1995,因为小圆上每一点都染以红、蓝两色之一,所以小圆上必有五个点同色,设此五点为A,B,C,D,E,过这两点作半径并将半径延长分别交大圆于A1,B1,C1,D1,E1,由抽屉原理知这五点中必有三点同色,不妨设为A1,B1,C1,则ΔABC与ΔA1B1C1都是顶点同色的三角形,且相似比为1995。4.三角法。例5 设AD,BE与CF为ΔABC的内角平分线,D,E,F在ΔABC的边上,如果∠EDF=900,求∠BAC的所有可能的值。[解] 见图16-3,记∠ADE=α,∠EDC=β,由题设∠F
7、DA=-α,∠BDF=-β,由正弦定理:,得,又由角平分线定理有,又,所以,8化简得,同理,即所以,所以sinβcosα-cosβsinα=sin(β-α)=0.又-π<β-α<π,所以β=α。所以,所以A=π。5.向量法。例6 设P是ΔABC所在平面上的一点,G是ΔABC的重心,求证:PA+PB+PC>3PG.[证明] 因为,又G为ΔABC重心,所以(事实上设AG交BC于E,则,所以)所以,所以又因为不全共线,上式“=”不能成立,所以PA+PB+PC>3PG。6.解析法。例7 H是ΔABC的垂心,P是任
8、意一点,HLPA,交PA于L,交BC于X,HMPB,交PB于M,交CA于Y,HNPC交PC于N,交AB于Z,求证:X,Y,Z三点共线。[解] 以H为原点,取不与条件中任何直线垂直的两条直线为x轴和y轴,建立直角坐标系,用(xk,yk8)表示点k对应的坐标,则直线PA的斜率为,直线HL斜率为,直线HL的方程为x(xP-xA)+y(yP-yA)=0.又直线HA的斜率为,所以直线BC的斜率为,直线BC的方程为xxA+yyA=xAxB
此文档下载收益归作者所有