欢迎来到天天文库
浏览记录
ID:55726157
大小:250.00 KB
页数:3页
时间:2020-06-01
《苏教版选修2-1高中数学1.1《命题及其关系》word课后知能检测 .doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【课堂新坐标】(教师用书)2013-2014学年高中数学1.1命题及其关系课后知能检测苏教版选修2-1一、填空题1.下列命题:①若xy=1,则x、y互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④实数的平方是非负数.其中真命题的序号是________.【解析】 ①④均正确,②③均错误.【答案】 ①④2.(2013·漳州高二检测)命题“若x2<1,则-1<x<1”的逆否命题是________.【解析】 条件:x2<1,结论:-12、2-1≠0”的逆否命题为________命题(填“真”“假”).【解析】 逆否命题为:若x2-1=0则x=1,显然为假命题.【答案】 假4.设a,b是向量,命题“若a=-b,则3、a4、=5、b6、”的逆命题是________.【解析】 逆命题的条件和结论是它的原命题的结论和条件.【答案】 若7、a8、=9、b10、,则a=-b5.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是________.【解析】 原命题的条件是“a+b+c=3”,结论是“a2+b2+c2≥3”,所以否命题是“若a+b+c≠3,则a2+b2+c2<3”.11、【答案】 若a+b+c≠3,则a2+b2+c2<36.有下列四个命题:①“已知函数y=f(x),x∈D,若D关于原点对称,则函数y=f(x),x∈D为奇函数”的逆命题;②“对应边平行的两角相等”的否命题;③“若a≠0,则方程ax+b=0有实根”的逆否命题;④“若A∪B=B,则B≠A”的逆否命题.其中的真命题是________.【解析】 ①的逆命题为:若y=f(x),x∈D为奇函数,则D关于原点对称,为真命题.②的否命题为:若两个角的对应边不平行,则两角不相等,为假命题.③的逆否命题为:若ax+b=0无实根,则a=0,为真命题.④的逆否命题为12、:若B=A,则A∪B≠B,为假命题.【答案】 ①③7.命题“若a,b是奇数,则a+b是偶数”以及它的逆命题、否命题、逆否命题,这四个命题中,真命题个数为________.【解析】 因为原命题是真命题,而逆命题“若a+b是偶数,则a,b都是奇数”是假命题,所以逆否命题是真命题,否命题是假命题,所以,真命题的个数是2.【答案】 28.(2013·杭州高二检测)把下面不完整的命题补充完整,并使之成为真命题.若函数f(x)=log2x的图象与g(x)的图象关于________对称,则函数g(x)=________.(注:填上你认为可以成为真命题的一13、种情形即可,不必考虑所有可能的情形).【解析】 可考虑关于x轴、y轴、直线y=x、原点对称等几种情形之一.【答案】 (1)x轴,-log2x;(2)y轴,log2(-x);(3)直线y=x,2x;(4)原点,-log2(-x)二、解答题9.指出下列命题中的条件p和结论q,并判断命题的真假:(1)若x+y是有理数,则x,y都是有理数;(2)如果一个函数的图象是一条直线,那么这个函数为一次函数;(3)函数y=2x+1为增函数.【解】 (1)条件p:x+y是有理数,结论q:x,y都是有理数,是假命题.(2)条件p:一个函数的图象是一条直线,结论q14、:这个函数为一次函数,是假命题.(3)将命题“函数y=2x+1为增函数”改写为“若p则q”的形式为“若一个函数为y=2x+1,则这个函数为增函数”.则条件p:一个函数为y=2x+1,结论q:这个函数为增函数,是真命题.10.分别写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假:(1)若一个三角形的两条边相等,则这个三角形的两个角相等;(2)奇函数的图象关于原点对称;(3)已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.【解】 (1)逆命题:若一个三角形的两个角相等,则这个三角形的两条边相等,是真命题.否命题:若一个三角15、形的两条边不相等,则这个三角形的两个角不相等,是真命题.逆否命题:若一个三角形的两个角不相等,则这个三角形的两条边不相等,是真命题.(2)原命题:若一个函数是奇函数,则这个函数的图象关于原点对称,是真命题.逆命题:若一个函数的图象关于原点对称,则这个函数是奇函数,是真命题.否命题:若一个函数不是奇函数,则这个函数的图象关于原点不对称,是真命题.逆否命题:若一个函数的图象关于原点不对称,则这个函数不是奇函数,是真命题.(3)逆命题:已知a,b,c,d是实数,若a+c=b+d,则a=b,c=d,是假命题.否命题:已知a,b,c,d是实数,若a与16、b、c与d不都相等,则a+c≠b+d,是假命题.逆否命题:已知a,b,c,d是实数,若a+c≠b+d,则a与b、c与d不都相等,是真命题.11.判断命题“已知a,x为实数,若关于
2、2-1≠0”的逆否命题为________命题(填“真”“假”).【解析】 逆否命题为:若x2-1=0则x=1,显然为假命题.【答案】 假4.设a,b是向量,命题“若a=-b,则
3、a
4、=
5、b
6、”的逆命题是________.【解析】 逆命题的条件和结论是它的原命题的结论和条件.【答案】 若
7、a
8、=
9、b
10、,则a=-b5.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是________.【解析】 原命题的条件是“a+b+c=3”,结论是“a2+b2+c2≥3”,所以否命题是“若a+b+c≠3,则a2+b2+c2<3”.
11、【答案】 若a+b+c≠3,则a2+b2+c2<36.有下列四个命题:①“已知函数y=f(x),x∈D,若D关于原点对称,则函数y=f(x),x∈D为奇函数”的逆命题;②“对应边平行的两角相等”的否命题;③“若a≠0,则方程ax+b=0有实根”的逆否命题;④“若A∪B=B,则B≠A”的逆否命题.其中的真命题是________.【解析】 ①的逆命题为:若y=f(x),x∈D为奇函数,则D关于原点对称,为真命题.②的否命题为:若两个角的对应边不平行,则两角不相等,为假命题.③的逆否命题为:若ax+b=0无实根,则a=0,为真命题.④的逆否命题为
12、:若B=A,则A∪B≠B,为假命题.【答案】 ①③7.命题“若a,b是奇数,则a+b是偶数”以及它的逆命题、否命题、逆否命题,这四个命题中,真命题个数为________.【解析】 因为原命题是真命题,而逆命题“若a+b是偶数,则a,b都是奇数”是假命题,所以逆否命题是真命题,否命题是假命题,所以,真命题的个数是2.【答案】 28.(2013·杭州高二检测)把下面不完整的命题补充完整,并使之成为真命题.若函数f(x)=log2x的图象与g(x)的图象关于________对称,则函数g(x)=________.(注:填上你认为可以成为真命题的一
13、种情形即可,不必考虑所有可能的情形).【解析】 可考虑关于x轴、y轴、直线y=x、原点对称等几种情形之一.【答案】 (1)x轴,-log2x;(2)y轴,log2(-x);(3)直线y=x,2x;(4)原点,-log2(-x)二、解答题9.指出下列命题中的条件p和结论q,并判断命题的真假:(1)若x+y是有理数,则x,y都是有理数;(2)如果一个函数的图象是一条直线,那么这个函数为一次函数;(3)函数y=2x+1为增函数.【解】 (1)条件p:x+y是有理数,结论q:x,y都是有理数,是假命题.(2)条件p:一个函数的图象是一条直线,结论q
14、:这个函数为一次函数,是假命题.(3)将命题“函数y=2x+1为增函数”改写为“若p则q”的形式为“若一个函数为y=2x+1,则这个函数为增函数”.则条件p:一个函数为y=2x+1,结论q:这个函数为增函数,是真命题.10.分别写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假:(1)若一个三角形的两条边相等,则这个三角形的两个角相等;(2)奇函数的图象关于原点对称;(3)已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.【解】 (1)逆命题:若一个三角形的两个角相等,则这个三角形的两条边相等,是真命题.否命题:若一个三角
15、形的两条边不相等,则这个三角形的两个角不相等,是真命题.逆否命题:若一个三角形的两个角不相等,则这个三角形的两条边不相等,是真命题.(2)原命题:若一个函数是奇函数,则这个函数的图象关于原点对称,是真命题.逆命题:若一个函数的图象关于原点对称,则这个函数是奇函数,是真命题.否命题:若一个函数不是奇函数,则这个函数的图象关于原点不对称,是真命题.逆否命题:若一个函数的图象关于原点不对称,则这个函数不是奇函数,是真命题.(3)逆命题:已知a,b,c,d是实数,若a+c=b+d,则a=b,c=d,是假命题.否命题:已知a,b,c,d是实数,若a与
16、b、c与d不都相等,则a+c≠b+d,是假命题.逆否命题:已知a,b,c,d是实数,若a+c≠b+d,则a与b、c与d不都相等,是真命题.11.判断命题“已知a,x为实数,若关于
此文档下载收益归作者所有