欢迎来到天天文库
浏览记录
ID:55637488
大小:443.00 KB
页数:12页
时间:2020-05-22
《教师测试题4)(有答案).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、教师专业测试题(2014.04.02)1、如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是( ) A.B.2C.3D.考点:菱形的性质;解直角三角形。专题:常规题型。分析:设BF、CE相交于点M,根据相似三角形对应边成比例列式求出CG的长度,从而得到DG的长度,再求出菱形ABCD边CD上的高与菱形ECGF边CE上的高,然后根据阴影部分的面积=S△BDM+S△DFM,列式计算即可得解.解答:解:如图,设BF、CE相交于点M,∵菱形ABCD和菱形ECGF的边长分别为2和3,∴△BCM∽△BGF,∴=,即=,解得C
2、M=1.2,∴DM=2﹣1.2=0.8,∵∠A=120°,∴∠ABC=180°﹣120°=60°,∴菱形ABCD边CD上的高为2sin60°=2×=,菱形ECGF边CE上的高为3sin60°=3×=,∴阴影部分面积=S△BDM+S△DFM=×0.8×+×0.8×=.故选A.点评:本题考查了菱形的性质,解直角三角形,把阴影部分分成两个三角形的面积,然后利用相似三角形对应边成比例求出CM的长度是解题的关键.yxOABP2、如图所示,已知,为反比例函数图像上的两点,动点在正半轴上运动,当线段与线段之差达到最大时,点的坐标是(D)A.B.C.D.【考点】反比例
3、函数综合题;待定系数法求一次函数解析式;三角形三边关系.【专题】计算题.【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,
4、AP-BP
5、<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【解答】解:∵把A(1/2,y1),B(2,y2)代入反比例函数y=1/x得:y1=2,y2=1/2,∴A(1/2,2),B(2,1/2),∵在△ABP中,由三角形的三边关系定理得:
6、AP-BP
7、<
8、AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:2=1/2k+b,1/2=2k+b,解得:k=-1,b=5/2,∴直线AB的解析式是y=-x+5/2,当y=0时,x=5/2,即P(5/2,0),故选D.【点评】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.3、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线
9、段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO;⑤S△AOC+S△AOB=.其中正确的结论是( A )A.①②③⑤B.①②③④C.①②③④⑤D.①②③【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理的逆定理.【专题】【分析】证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故
10、△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=6+43,故结论④错误;如图②,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.利用旋转变换构造等边三角形与直角三角形,将S△AOC+S△AOB转化为S△COO″+S△AOO″,计算可得结论⑤正确.【解答】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①
11、,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△
12、AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=,故结论⑤正确.综上所述,
此文档下载收益归作者所有