欢迎来到天天文库
浏览记录
ID:55512198
大小:114.00 KB
页数:10页
时间:2020-05-15
《2020年考研复试力学专业综合素质环节导师常问问题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2020年考研复试力学专业综合素质环节导师常问问题(仅供参考)专业课笔试科目涉及考生所报考专业的一门或两门重要的基础课。复试阶段的专业课笔试着重对考生基本功的考查,更重基础,一般来说要容易很多,但不能掉以轻心,考生最好早动手准备,全面复习本科重要基础课中的基本概念、基本定理、基本方法。力学课程体系简介1.力学基础课程(数学基础、理论力学、材料力学等)学习目的储备学习工具。2.力学专业课程(弹性力学等)学习目的是知晓力学原理,为后续的其它力学课程建立严密的数学体系提供基础。3.行业力学课程(机械设计、航天动力学、桥梁力
2、学、建筑力学、施工力学等)学习目的是实现服务工程。理论力学1.什么是惯性系?无角加速度和线加速度的坐标系为惯性系。2.柯西加速度产生的原因?3.什么是虚位移?虚功?某瞬时,质点系在约束允许的条件下可能实现的任何无限小的位移为虚位移。力在虚位移上所做功为虚功。4.什么是虚位移原理?对于具有理想约束的质点系,其平衡的充要条件是:作用于质点系的所有主动力在任何虚位移中所作虚功之和为0.5.达朗贝尔原理和虚位移原理结合后是什么?动力学普遍方程。6.定常约束? 又称稳定约束。不随时间变化的一种约束。若完整约束的约束方程中不显含
3、时间t ,称该完整约束是定常约束。非定常约束?又称非稳定约束。不符合定常约束条件的约束。例如对一被限制在半径为R的球面上运动的质点,若球心固定在坐标原点,R随时间而变,即R=R(t),则约束方程为(P343)7.完整约束?约束方程中不含确定系统位置的坐标的微商,或含有坐标的微商但不利用动力学方程就可直接积分成为不含坐标微商的约束。非完整约束?约束方程中含有确定系统位置的坐标的微商且不利用动力学方程不能直接积分为不含坐标微商的约束。(P343)8.理想约束?在质点系任何虚位移中,所有约束力所做虚功之和为0.9.主动力?
4、主动力:重力,弹簧弹性力,静电力和洛仑兹力等有其“独立自主”的大小和方向,不受质点所受的其它力的影响,处于“主动”地位,称“主动力”。材料力学1.基本假设:连续性、均匀性、各项同性、小变形。2.杆件的四种基本变形:拉压、剪切、弯曲、扭转。3.材力研究问题的主要手段:静力平衡条件、物理条件、变形协调条件(几何条件)。4.角应变如何定义?为什么不能以某点微直线段的转角来定义某点的角应变?某点处两垂直微直线段的相对转角;排除刚性转动的影响。5.冷作硬化对材料有何影响?提高材料的屈服应力。6.什么是圆杆扭转的极限扭矩?使圆杆
5、整个横截面的切应力都达到屈服极限时所能承受的扭矩。7.杆件纯弯曲时的体积是否变化?拉压弹性模量不同时体积会发生变化。8.材料破坏的基本形式:流动、断裂9.四大强度理论?哪些是脆性断裂的强度理论,哪些是塑性屈服的强度理论?1、最大拉应力理论: 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。σb/s=[σ],所以按第一强度理论建立的强度条件
6、为:σ1≤[σ]。 2、最大伸长线应变理论: 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。εu=σb/E;ε1=σb/E。由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E,所以σ1-u(σ2+σ3)=σb。按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。3、最大切应力理论: 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应
7、力τ0,材料就要发生屈服破坏。τmax=τ0。依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。所以破坏条件改写为σ1-σ3=σs。按第三强度理论的强度条件为:σ1-σ3≤[σ]。4、形状改变比能理论: 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。发生塑性破坏的条件,所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-
8、σ1σ2-σ2σ3-σ3σ1)<[σ]10.斜弯曲:梁弯曲后挠曲线所在平面与载荷作用面不在同一平面上。11压杆失稳时将绕那根轴失稳?惯性矩最小的形心主惯性轴。12为什么弹性力学中对微元体进行分析时,两侧应力不同(如,),而材料力学中对微元体进行分析时,两侧应力相同(均为)?因为材料力学中没有考虑体力的影响,而实质上弹性力学中记及体力的影响之后所
此文档下载收益归作者所有