资源描述:
《新课改地区2021版高考数学一轮复习章函数及其应用2.9函数模型及其应用练习新人教B.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.9函数模型及其应用核心考点·精准研析考点一 利用图象刻画实际问题 1.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【解析】选A.由题图可知,2014年8月到9月的月接待游客量在减少,则A选项错误,故选A.2.如图所示,一直角墙角,两边的长度足够长
2、,在P处有一棵树与两墙的距离分别是a(m)(08时,由于函数在[a,12]上为减函数,所以当x=a时,矩形面积取最大值Smax=f(a)=a(16-a).3.某地一年的气温Q(t)(
3、单位:℃)与时间t(月份)之间的关系如图所示,已知该年的平均气温为10℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是( )【解析】选A.若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10℃,所以当t=12时,平均气温应该为10℃,故排除B;因为在靠近12月份时其温度小于10℃,因此12月份前的一小段时间内的平均气温应该大于10℃,排除C;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D.4
4、.(2020·广州模拟)某罐头加工厂库存芒果m(kg),今年又购进n(kg)新芒果后,欲将芒果总量的三分之一用于加工芒果罐头.被加工为罐头的新芒果最多为f1(kg),最少为f2(kg),则下列选项中最能准确描述f1,f2分别与n的关系的是( )10【解析】选A.要使得被加工为罐头的新芒果最少,尽量使用库存芒果,即当≤m,n≤2m时,f2=0,当n>2m时,f2=-m=>0,对照图象舍去C,D;要使得被加工为罐头的新芒果最多,则尽量使用新芒果,即当≤n,n≥时f1=,当>n,n<时f1=n,因为<2m,所以A符合题意. 判断函数图象与实际问题变化过程相吻
5、合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点二 已知函数模型求解实际问题 【典例】1.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3000+20x-0.1x2(06、m3)和煤气费f(x)(元)满足关系f(x)=已知某家庭2016年前三个月的煤气费如表:月份用气量煤气费10一月份4m34元二月份25m314元三月份35m319元若四月份该家庭使用了20m3的煤气,则其煤气费为( )A.11.5元B.11元C.10.5元D.10元3.某农场种植一种农作物,为了解该农作物的产量情况,现将近四年的年产量f(x)(单位:万斤)与年份x(记2015年为第1年)之间的关系统计如下:x1234f(x)4.005.627.008.86则f(x)近似符合以下三种函数模型之一:①f(x)=ax+b;②f(x)=2x+a;③f(x)=x
7、2+b.则你认为最适合的函数模型的序号是________. 【解题导思】序号联想解题1由销售收入不小于总成本,想到销售收入≥总成本2由f(x)的解析式考虑用待定系数法求A,B,C的值3由三个模拟函数选择,想到逐个验证求解【解析】1.选C.设利润为f(x)万元,则f(x)=25x-(3000+20x-0.1x2)=0.1x2+5x-3000(08、A=5,B=,C=4,所以f(x)=所以f(20)=4+(20-5)=11.5.