欢迎来到天天文库
浏览记录
ID:55492071
大小:310.50 KB
页数:14页
时间:2020-05-15
《铁磁性及磁由能-1.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、铁磁性及磁自由能如果物质的χ大于0,且数值很大,这类物质为铁磁性物质,如Fe、Co、Ni等。铁磁性材料具有很强的磁性,在技术具有广泛的应用,通常所指的磁性材料就是这类材料。研究表明,铁磁性和顺磁性具有相同的来源。可是对顺磁体来说,要使顺磁体中由于热扰动而排列混乱的磁矩在室温下达到接近于整齐排列的状态,需要8×108A/m的强磁场,而目前可达到的极限磁场不可能达到如此高的强度。但对于铁磁体来说,它的磁化强度容易改变,只需在很小的磁场下(1×103A/m)就可以达到技术饱和,把磁场去除后,这种排列仍然可以保持下去。所
2、以,铁磁性研究的核心问题就是为什么铁磁体的原子磁矩比顺磁体容易整列得多?一、铁磁性的物理本质1.1、Weiss假说根据大量实验,Weiss提出第一个假设是,在磁体中存在着与外磁场无关的自发磁化强度,在数值上等于技术饱和磁化强度Ms,而且这种自发磁化强度的大小与物体所处环境的温度有关。对于每一种铁磁体都有一个完全确定的温度,在该温度以上,物质就完全失去了其铁磁性。图1-1在Ba铁氧体中观察到的片形畴实验事实表明,在外磁场为零的时候,铁磁体不存在磁化强度。而根据Weiss的第一个假设,铁磁体似乎是应该有。这个矛盾显然
3、是由另外一些原因所造成的。为解决这个矛盾,Weiss提出第二个假设,在居里点以下铁磁体都分成许多微小的区域,在这些区域中存在着与铁磁体所处温度对应的自发磁化强度。这种区域为磁畴。由于热运动的无序性,在没有外场的时候,铁磁体内部各磁畴的自发磁化强度混乱取向,相互抵消,以致使的整个物体的宏观磁化强度为零。只有在外场的影响下,磁畴中磁化强度的取向和磁畴体积才会发生变化,使得物体中出现宏观的磁化强度。尽管Weiss假设对铁磁学有十分重要的意义,但是限于当时物理学的发展水平,它只是一种表象理论,并没有揭示两个基本假设的物理
4、意义。到了1929年海森堡证明,相邻原子间有静电交换作用并通过量子力学方法计算了铁磁体的自发磁化强度,Weiss理论才以量子交换力作为相互作用力的起源,解释了铁磁性的物理本质。1.2、自发磁化原子结构表明,Fe、Co、Ni和其相邻元素Mn、Cr等原子磁性并无本质差别,凝聚成晶体后,其磁性都来源于3d次壳层中电子没有填满的自旋磁矩,然而前者是铁磁性的,后者是非铁磁性的。材料是否具有铁磁性的关键不在于组成材料的原子本身所具有的磁矩大小,而在于形成凝聚态后原子的相互作用。在有电子壳层参加的原子现象范围内通常有两种类型的
5、力:磁力和静电力。为了解释Weiss的第一个假设,人们试图用原子磁矩之间的磁的相互作用力来解释原子磁矩出现自发的平行取向。然而,这种作用力的能量与热运动的能量相比太小了。因为将物体加热到1K就可以破坏原子磁矩的自发平行取向,因而物体的居里温度应在1K左右。但是实际铁磁体的居里温度在数百K甚至上千K,如表1-1所示。由此可见,引起铁磁体内原子磁矩排列整齐,并使有序状态保持到如此高的温度的力量比起磁力来大千百倍。表1-1一些铁磁体的居里温度Tc物质Tc/K物质Tc/KFe1043CrO2386Co1388MnO·Fe
6、2O3573Ni627FeO·Fe2O3858Gd292NiO·Fe2O3858Dy88CuO·Fe2O3728MnBi630MgO·Fe2O3713如果我们把导致铁磁体自发磁化的力看成一个等效磁场,可以估计一下这个等效磁场的大小。既然铁磁体有居里温度存在,说明在这个临界温度时,原子热运动能已经大到和自发磁化等效磁场与原子磁矩之间的能量相等。所以,在居里点时,一个原子的热运动能为kBTc的数量级,而静磁能也在kBTc的数量级,式中,kB(1.3803×1023J/K)为玻尔兹曼常数,μB(1.1653×10-29
7、Wb·m)为玻尔磁子。显然,原子范围内提供不了这样大的磁场。因而,引起原子磁矩的自发排列的力肯定不是原子磁矩之间的磁的相互作用力。进而,人们把注意力转向静电力。但是,建立在Newton力学和Maxwell电磁力学上的经典电子论也不能揭示铁磁体自发磁化的本质。Heisenberg和Frank按照量子理论证明,物质内部相邻原子的电子之间有一种来源于静电的相互作用力。由于这种交换作用对系统能量的影响,迫使各原子的磁矩平行或反平行排列。图1-1氢分子模型为了简单说明静电交换作用,可以用氢分子这一简单的电子系统作分析。图1
8、-1表示两个原子核a、b和两个电子1、2组成的氢分子模型。当两个氢原子距离很远时,因为无相互作用,电子的自旋取向是互不干扰的,这时两个原子内的电子运动状态分别用波函数ψa(1)和ψb(2)表示。设每个原子都处于基态,其能量为E0。当两原子接近组成氢分子后,在核与核、电子与电子之间、核与电子之间便产生了新的静电相互作用。此外,这个系统的静电能还依赖于电子自旋的相对取向。由于
此文档下载收益归作者所有