资源描述:
《高一数学《集合有关概念》知识点总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、高一数学《集合有关概念》知识点总结高一数学《集合有关概念》知识点总结一、集合有关概念1集合的含义2集合的中元素的三个特性:(1)元素的确定性如:世界上最高的(2)元素的互异性如:由HAPP的字母组成的集合{H,A,P,}(3)元素的无序性:如:{a,b,}和{a,,b}是表示同一个集合3集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,}(2)集合的表示方法:列举法与描述法。u注意:常用数集及其记法:非负整数集(即自然
2、数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R1)列举法:{a,b,……}2)描述法:将集合中的元素的公共属性描述出,写在大括号内表示集合的方法。{x&Iir;R
3、x-3>2},{x
4、x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合 例:{x
5、x2=-}二、集合间的基本关系1“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反
6、之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(≥,且≤,则=)实例:设A={x
7、x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。A&Iaute;A
②真子集:如果A&Iaute;B,且A¹B那就说集合A是集合B的真子集,记作AB(或BA)③如果A&Iaute;B,B&Iaute;,那么A&Iaute;④如果A&Iaute;B同时B&Iaute;A那么A=B3不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是
8、任何非空集合的真子集。u有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x
9、xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x
10、xA,或xB}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)SA记作,即SA=韦恩图示SA性质AA=AAΦ=ΦAB=BAAB
11、AABBAA=AAΦ=AAB=BAABAABB(uA)(uB)=u(AB)(uA)(uB)=u(AB)A(uA)=UA(uA)=Φ.例题:1下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家一切很大的书D倒数等于它自身的实数2集合{a,b,}的真子集共有个3若集合={
12、=x2-2x+1,xR},N={x
13、x≥0},则与N的关系是4设集合A=,B=,若AB,则的取值范围是0名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都
14、做对的有人。6用描述法表示图中阴影部分的点(含边界上的点)组成的集合=7已知集合A={x
15、x2+2x-8=0},B={x
16、x2-x+6=0},={x
17、x2-x+2-19=0},若B∩≠Φ,A∩=Φ,求的值