一次函数复习资料.docx

一次函数复习资料.docx

ID:55414107

大小:34.19 KB

页数:2页

时间:2020-05-12

一次函数复习资料.docx_第1页
一次函数复习资料.docx_第2页
资源描述:

《一次函数复习资料.docx》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、一次函数复习资料1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。例题:在匀速运动公式中,表示速度,表示时间,表示在时间内所走的路程,则变量是________,常量是_______.在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。4、确定函数定义域的方法:(1)关系式为整式时,

2、函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示变量的式子叫做解析式。7、描点法画函数图形的一般步骤:列表,描点,连线8、函数的表示方法:列表法,解析式法,图象法9、正比例函数及性质一般地,形如y=kx(k是常数,

3、k≠0)的函数叫做正比例函数,其中k叫做比例系数.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:

4、k

5、越大,越接近y轴;

6、k

7、越小,越接近x轴10、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b(k不为零)①k不为零②x指数为1③b取任意实数一次函数y=kx+

8、b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移

9、b

10、个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小.(2)倾斜度:

11、k

12、越大,图象越接近于y轴;

13、k

14、越小,图象越接近于x轴.(3)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b<0时,将直线y=kx的图象向下平移b个单位.向左平移a个单位后的关系式y=k(x+a)+b向右平移a个单位后的关系式y=k(x-a)+b11、一次函数y=kx+b的图象的画法.根据几何知识:经过两点

15、能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点. b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小12、正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移

16、b

17、个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).1

18、3、直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1b2(2)两直线相交:k1k2(3)两直线关于x坐标轴对称:k1+k2=0 且b1+b2=0两直线关于y坐标轴对称:k1+k2=0 且b1=b214、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.15、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常

19、数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。