欢迎来到天天文库
浏览记录
ID:55356337
大小:60.00 KB
页数:9页
时间:2020-05-11
《遇上不会做题怎么办.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、遇上不会做的题怎么办一问:要不要把全卷看一遍? 拿到卷子以后看一下,是看考卷一共几页,多少道题一定要先知道,千万不能落题和落页。关于是否要把全卷的题目全看一遍,同学们按自己的习惯来做,没有对错之分。一模二模你们怎么做的,高考还是怎么做,不要改变你的习惯做法。对于第一场考试的语代试卷,我个人的意见是作代题要看一看的,看了作代,心里有数,等到真正开始作代的时候再细细考虑。 二问:如何提高一卷的得分率? 一卷是客观性试题,即选择题和判断题等。一般说,我们的第一判断力非常重要,推翻第一判断一定要谨慎。提高
2、一卷的得分率,同学们第一要重视第一判断,第二要基础扎实,第三要加强抗干扰能力。调查显示:一卷前5题的错误率比较高,因为一开始考生一般心情比较紧张,所以提醒大家,在心情恢复正常时要着重检查一下前5题。英语一卷有听力,占总分比例是挺高的,所以大家一定要谨慎对待。 三问:遇上不会做的题怎么办? 高考是选拔考试,碰到难题是非常正常的。碰到不会做的题不要紧张,要想到,我不会做,那好多人也未必会做。一定要稳定心态。 四问:有的题可以上手,但做半截又不会了,怎么办? 碰到这样的题不要慌,仔细审题,能做一步做一
3、步,能做两步做两步。高考试题题题设防,题题把关,评分按步计分,中档题做对一步给一步的分。心态一定要放松,不可能一道题会做,就一定能做到底。高考考题看重的是区分度。 五问:最后一题是最难的吗? 不一定。高考试卷有一个长度,指题量的答题时间的一个参数:中等程度以上的同学在规定的时间内能答完试题。所以答不完卷子的情况也是正常的,但是,最后一道题不要不看,能做几步做几步,能得几分得几分。 六问:要不要最后检查一下全卷? 相当一部分同学在规定时间内答不完题,但一定要留下15分钟左右时间检查全卷。往往检查一
4、遍,能检查出一个错误,从而多得几分,这也是高考成功的一个重要方法。 七问:有没有一个具体的答题要领? 基本的答题要领是:慢做会的求全对,稳做中档题一分也不浪费,舍去全不会。会做的题慢慢做,保证全对。中档题可以上手,高考按步计分,做一步给一步分。中档题能做一步就做一步。舍去全不会指的是难题,不是说一看不会就舍去。认真看认真思考,确实不会再舍去。数学学习的误区.误区一:课上听懂知识就掌握了在数学学习过程中,常常出现这种现象,学生在课堂上听懂了,但课后解题特别是遇到新题型时便无所适从。这就说明上课听懂是一
5、回事,而达到能应用知识解决问题是另一回事。波里亚说得好:“教师在课堂上讲什么当然重要,然而学生想什么更是千百倍的重要。”教师所举例题是范例也是思维训练的手段,作为学生不应该只学会题中的知识,更要学会领悟出解题思路与技巧,以及蕴藏其中的数学思想方法。对策一:自己重做一遍例题。对策二:问自己:为什么这样思考问题?对策三:条件、结论换一下行吗?对策四:有其他结论吗?对策五:我能得到什么解题规律?误区二:多做题目总能遇到考试题有这种想法的人总会感到失望。每一份综合试卷,出卷人总要避免考旧题、陈题,尽量从新的角度
6、,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。对策一:让自己花点时间整理最近解题的题型与思路。对策二:这道题和以前的某一题差不多吗?对策三:此题的知识点我是否熟悉了?对策四:最近有哪几题的图形相近?能否归类?对策五:这一题的解题思想在以前题目中也用到了,让我把它们找出来!误区三钻研难题基
7、础题就简单了有一个学生曾对我说:“我喜欢做难题,钻研数学难题能让我感到思维中的快乐,简单的题目没有什么意思。”应该说这位同学已经体会到了数学学习的快乐,他对数学开始有自己的理解,可是奇怪的是他的数学成绩总达不到满意的高分,考完试后他总是后悔有一些地方不细心或没注意。其实这也在一定程度上反映出我们数学学习中的浮躁状况,老师爱讲难题、综合题,学生想做综合题、难题,在忽视基础的同时,迷失了数学学习的方向。对策一:告诉自己数学思维不等于复杂思维,数学的美往往体现在一些小题目中。对策二:“简约而不简单”在平常题中
8、体会数学思维的乐趣。对策三:“一滴朝露也能折射出太阳的光辉。”让我从基础题中找到综合题的影子。对策四:这道题真的简单吗?对策五:我是一名优秀的学生,我能在平凡中体现出我的优秀。误区四 思想有点高不可攀一谈到数学思想方法,有些学生会认为深不可测、高不可攀。其实每一道数学题之中都包含着数学思想方法,例如把分式方程化为整式方程就应用了转化思想,列方程解应用题体现了方程思想,平面直角坐标系中图象与解析式反映了数形结合思想,图形的翻折与旋转则表现了运
此文档下载收益归作者所有