中考数学历年部分真题整理.doc

中考数学历年部分真题整理.doc

ID:55187640

大小:331.50 KB

页数:6页

时间:2020-05-02

中考数学历年部分真题整理.doc_第1页
中考数学历年部分真题整理.doc_第2页
中考数学历年部分真题整理.doc_第3页
中考数学历年部分真题整理.doc_第4页
中考数学历年部分真题整理.doc_第5页
资源描述:

《中考数学历年部分真题整理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、小学奥数中考数学一对一辅导qq:284860202第一部分函数图象中点的存在性问题1.1因动点产生的相似三角形问题例12013年上海市中考第24题如图1,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.图1动感体验请打开几何画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.请打开超级

2、画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,△ABC与△AOM相似.点击按钮的左部和中部,可到达相似的准确位置。思路点拨1.第(2)题把求∠AOM的大小,转化为求∠BOM的大小.2.因为∠BOM=∠ABO=30°,因此点C在点B的右侧时,恰好有∠ABC=∠AOM.3.根据夹角相等对应边成比例,分两种情况讨论△ABC与△AOM相似.满分解答(1)如图2,过点A作AH⊥y轴,垂足为H.在Rt△AOH中,AO=2,∠AOH=30°,所以AH=1,OH=.所以A.因为抛物线与x轴交于O、B(2,0)两点,设y=ax(

3、x-2),代入点A,可得.图2所以抛物线的表达式为.地址:二环路府青立交浅水半岛一期小学奥数中考数学一对一辅导qq:284860202(2)由,得抛物线的顶点M的坐标为.所以.所以∠BOM=30°.所以∠AOM=150°.(3)由A、B(2,0)、M,得,,.所以∠ABO=30°,.因此当点C在点B右侧时,∠ABC=∠AOM=150°.△ABC与△AOM相似,存在两种情况:①如图3,当时,.此时C(4,0).②如图4,当时,.此时C(8,0).图3图4考点伸展在本题情境下,如果△ABC与△BOM相似,求点C的坐标.如图5,因为△BOM是30°底角的等腰三角

4、形,∠ABO=30°,因此△ABC也是底角为30°的等腰三角形,AB=AC,根据对称性,点C的坐标为(-4,0).图5例22012年苏州市中考第29题地址:二环路府青立交浅水半岛一期小学奥数中考数学一对一辅导qq:284860202如图1,已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存

5、在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.图1动感体验请打开几何画板文件名“12苏州29”,拖动点B在x轴的正半轴上运动,可以体验到,点P到两坐标轴的距离相等,存在四边形PCOB的面积等于2b的时刻.双击按钮“第(3)题”,拖动点B,可以体验到,存在∠OQA=∠B的时刻,也存在∠OQ′A=∠B的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等

6、.2.联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A与x轴垂直的直线上.满分解答(1)B的坐标为(b,0),点C的坐标为(0,).(2)如图2,过点P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,那么△PDB≌△PEC.因此PD=PE.设点P的坐标为(x,x).如图3,联结OP.所以S四边形PCOB=S△PCO+S△PBO==2b.解得.所以点P的坐标为().图2图3地址:二环路府青立交浅水半岛一期小学奥数中考数学一对一辅导qq

7、:284860202(3)由,得A(1,0),OA=1.①如图4,以OA、OC为邻边构造矩形OAQC,那么△OQC≌△QOA.当,即时,△BQA∽△QOA.所以.解得.所以符合题意的点Q为().②如图5,以OC为直径的圆与直线x=1交于点Q,那么∠OQC=90°。因此△OCQ∽△QOA.当时,△BQA∽△QOA.此时∠OQB=90°.所以C、Q、B三点共线.因此,即.解得.此时Q(1,4).图4图5考点伸展第(3)题的思路是,A、C、O三点是确定的,B是x轴正半轴上待定的点,而∠QOA与∠QOC是互余的,那么我们自然想到三个三角形都是直角三角形的情况.这样

8、,先根据△QOA与△QOC相似把点Q的位置确定下来,再根据两直角边

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。