2018年全国统一高考数学试卷(理科)(新课标ⅰ).doc

2018年全国统一高考数学试卷(理科)(新课标ⅰ).doc

ID:55172046

大小:318.00 KB

页数:25页

时间:2020-04-30

2018年全国统一高考数学试卷(理科)(新课标ⅰ).doc_第1页
2018年全国统一高考数学试卷(理科)(新课标ⅰ).doc_第2页
2018年全国统一高考数学试卷(理科)(新课标ⅰ).doc_第3页
2018年全国统一高考数学试卷(理科)(新课标ⅰ).doc_第4页
2018年全国统一高考数学试卷(理科)(新课标ⅰ).doc_第5页
资源描述:

《2018年全国统一高考数学试卷(理科)(新课标ⅰ).doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、2018年全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(5分)设z=+2i,则

2、z

3、=(  )A.0B.C.1D.2.(5分)已知集合A={x

4、x2﹣x﹣2>0},则∁RA=(  )A.{x

5、﹣1<x<2}B.{x

6、﹣1≤x≤2}C.{x

7、x<﹣1}∪{x

8、x>2}D.{x

9、x≤﹣1}∪{x

10、x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济

11、收入构成比例,得到如下饼图:则下面结论中不正确的是(  )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记Sn为等差数列{an}的前n项和.若3S3=S2+S4,a1=2,则a5=(  )A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为(  )第25页(共25页)A.y=﹣2xB.y=﹣xC.y=2xD.y=x

12、6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=(  )A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(  )A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=(  )A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是( 

13、 )A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则(  )第25页(共25页)A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M

14、,N.若△OMN为直角三角形,则

15、MN

16、=(  )A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为(  )A.B.C.D. 二、填空题:本题共4小题,每小题5分,共20分。13.(5分)若x,y满足约束条件,则z=3x+2y的最大值为  .14.(5分)记Sn为数列{an}的前n项和.若Sn=2an+1,则S6=  .15.(5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有  种.(用数字填写答案)16.(5分)已知函数f(x)=2s

17、inx+sin2x,则f(x)的最小值是  . 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.18.(12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平

18、面ABFD所成角的正弦值.第25页(共25页)19.(12分)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中

19、恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。