【期末复习】北师大版六年级数学(下册)知识要点归纳.doc

【期末复习】北师大版六年级数学(下册)知识要点归纳.doc

ID:55126837

大小:39.50 KB

页数:8页

时间:2020-04-28

【期末复习】北师大版六年级数学(下册)知识要点归纳.doc_第1页
【期末复习】北师大版六年级数学(下册)知识要点归纳.doc_第2页
【期末复习】北师大版六年级数学(下册)知识要点归纳.doc_第3页
【期末复习】北师大版六年级数学(下册)知识要点归纳.doc_第4页
【期末复习】北师大版六年级数学(下册)知识要点归纳.doc_第5页
资源描述:

《【期末复习】北师大版六年级数学(下册)知识要点归纳.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一单元 圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。(2)两个底面间的距离叫做圆柱的高。(3)圆柱有无数条高,且高的长度都相等。(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。(2)圆锥的侧面是一个曲面。(3)圆锥只有一条高。(4)圆锥是由直角三角形绕一条直角边旋转360度得

2、到的立方体,所以沿高线切割后的切面是等腰三角形。4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底

3、面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底  或S表=πdh+πd2/2   或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。5、圆柱的体积:一个圆柱所占空间的大小。6、圆柱体积公式的推导:   复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半

4、径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。因此,圆柱的体积=底面积×高如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。  例题:填空

5、:圆柱体积公式推导过程是利用(转化)的数学思想,在此过程中(形状)变了,(体积)没变。拼成图形的高于圆柱的(高)相等,他们的底面积(相等)所以圆柱的体积公式为(底面积×高)圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。(2)已知圆柱的底面半径和高,求体积,可用公式:V=πr2h;(3)已知圆柱的底面直径和高,求体积,可用公式:V=π(d/2)2h;(4)已知圆柱的底面周长和高,求体积,可用公式:V=π(C/2π)2h;圆柱形容器的容积=底面积×高,用字母表示

6、是V=Sh。6、圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。7、圆锥的体积:一个圆锥所占空间的大小。圆锥的体积=1/3×底面积×高 如果用V表示圆锥的体积,S表示底面积,h表示高,则字母公式为:1/3Sh圆锥体积公式的应用:(1)求圆锥体积时,如果题中给出底面积和高这两个条件,可以直接运用“v=1/3Sh”这一公式。(2)求圆锥体积时,如果题中给出底面半径和高这两个条件,可以运用1/3πr²h(3)求圆锥体积时,如果题中给出底面直径和高这两个条件,可以运用1/3π(d/2)²h(4)求圆锥

7、体积时,如果题中给出底面周长和高这两个条件,可以运用1/3π(c/2r)²h复习五年级下册知识:1、体积:物体所占空间的大小叫作物体的体积。   容积:容器所能容纳物体的体积叫做物体的容积。2、常用单位 :体积单位:米3 (m3)    分米3(dm3)        厘米3 (cm3)               容积单位:升(L)      毫升(ml)     补充知识点:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作单位。单位换算:(相邻单位之间的进率为1000)(小单位化成大单位

8、要除以进率,大单位化成小单位要乘以进率。  可以概括为:小化大除一下,大化小乘一下)1米3=1000分米3       1分米3=1000厘米3    1升=1000毫升   1升=1分米3   1毫升=1厘米3单名数与复名数之间的互化:单名数:由一个数和一个单位名称组成的名数叫做单名数。复名数:由两个或两个以上的数及单位名称组成的名数叫做复名数。复名数化为单名数:8米320分米3=8020分米3=8.20米3单名数化为复名数:3800毫升=3升800毫升   25.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。