欢迎来到天天文库
浏览记录
ID:55028900
大小:25.50 KB
页数:4页
时间:2020-04-26
《小学数学概念教学中的问题及其解决方法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、学科教学研究小学数学概念教学中的问题及其解决方法济南市历城区西营镇秦口峪小学李绪山数学概念是小学数学中重要的学习内容,它是客观世界中数量关系和空间形式的本质属性在人脑中的反映,是进行数学思维的基本要素。新课标指出,我们要让学生经历观察、实验、猜想、证明等数学活动,发展合情推理能力和初步的演绎推理能力。学习数学知识的过程就是一个不断地运用已有的数学概念进行比较、分析、综合、概括、判断、推理的思维过程。只有正确地理解和掌握数学概念,才能有效地进行判断、解释、推理、运算与解决问题。因此,概念教学在教学
2、中具有十分重要的地位,一直是教学关注的重点之一。一、数学概念教学中的问题新课程实施以来,传统的数学教学模式淡出了课堂。探究式、体验式、小组合作等学习方式被广泛运用到数学概念教学中来,课堂教学发生了前所未有的积极变化,激发了学生数学学习的主动性和创造性。然而,伴随这一积极变化的同时,数学概念教学出现的新问题也不容忽视。主要表现为以下几个方面:1、兜圈子,绕弯子不少教师注重在概念教学中创设问题情境,注重激发学生的学习兴趣和探索新知识的强烈愿望,取得了良好的效果。然而,问题情境也是一把“双面刃“运用不
3、当,会产生“冗余效应”和“分散注意效应”。例如,有一教师在“对称图形”教学中,设计了“在优美的小提琴协奏曲‘梁祝化蝶’选段的渲染中,学生开始观察‘碧草清清花盛开,彩蝶双双久徘徊’的优美画面”的导入情境,接着提问学生:蝴蝶有什么特点?学生答道:“蝴蝶很漂亮”“一只蝴蝶大,一只蝴蝶小”……不难看出,上述导入情境岁赏心悦目,但充斥了许多与教学内容无关的信息,离数学中的对称图形知识相去甚远。导入活动虽然占用了较长时间,却没有一个学生从对称的角度指出蝴蝶图案的特点,未达到教学设计的预期目标。显然,这种兜圈
4、子、绕弯子的情境活动设计,转移了学生的数学注意力。当前,概念教学设计中存在的简单问题复杂化现象,与一部分教师误以为情境一定要有新花样来吸引学生有着一定的关系。凡事要讲求效率,兜圈子、绕弯子、华而不实、教学效率低下都是不可取的。2、重感知,轻认知感知是人们认识事物不可或缺的心理过程,是对事物外不饿正的直接反映,属于认识过程的感性阶段。感知所提供的对事物的认识是简单的、表面的、零散的。感知不等于认知。例如,学生感知到的“园没有角,弯弯的,边很光滑”“圆是由一圈弯弯的线组成的”等外部特征并不等于”圆”
5、的本质特征,也不是对圆的认识。因为这些外部特征均不涉及圆的“一种同长”的本质。然而,在概念教学,尤其是几何图形概念教学中,重感知、轻认知的现象并不在少。例如,学习“角”,教师带了很多“角”的物品,让学生看一看、摸一摸,感知角的形状是“尖尖的”,以锐角特征去表征角的本质特点;然后画出若干个与锐角形状相关的图形,判断他们是不是角。再如,在“三角形的稳定性”教学中,比较普遍的做法是通过教师演示或让学生用手拉三角形木架感知是否坚固、不变形,并以此解释三角形的“稳定性”,而忽视从“三角形三条边的长度一定时
6、,三角形的形状和大小不变”上引导学生理解三角形的稳定性,误导了学生。笔者认为,考虑到小学生的思维处于形象思维向抽象思维过渡的发展阶段,在数学概念教学中,重视直观性、感知、体验,无疑是必要的。但如果止步于对事物的感知,忽视对概念本质特征的抽象与概括,这样做实际上低估了学生的学习能力,势必影响其抽象、概括能力和推理能力的发展。3、重记忆,轻理解在概念教学中,重记忆、轻理解的现象仍然比较普遍。主要表现以下两点。其一是偏重形式记忆。数学中有一些概念是以符号或式子的形式表示其意义的,而且在运用中又往往直接
7、和这些符号或式子打交道。由此造成一些教师在教学中疏于引导学生对概念的意义的理解,偏重于学生记忆概念的外部表现形式。例如,在“倒数”概念教学,部分教师喜欢从倒数的外部特征(分子、分母上下颠倒位置)入手,类比语文中特殊结构的复名词(“蜜蜂蜂蜜”“天上上天”等)引入“倒数”的概念,并且引导学生关注作为倒数的分子、分母互相颠倒这一形式上的特点。这样教学,效果似乎很好,但却淡忘了“倒数”概念的应用意义与作用,是一种舍本求末的做法。其二是偏重概念复述。概念的定义或描述是对概念本质特征和外延的说明,它是判断、
8、解释、推理和应用的基础。怎样让学生掌握概念?有些教师只是简单地让学生复述一遍概念的定义。结果,学生虽然会背概念,但遇到具体问题是,却茫然不知如何使用概念,即所谓“死知识”。例如,在探索1/4+1/2时,虽然许多学生对分数的意义熟记于心,但却有半数以上的学生直接用分母加分母、分子加分子的方法求和。者从一个侧面反映了相当多的学生受思维定势的影响,仍习惯于按整数加法的模式直接去相加,而不是结合分数意义去理解分数加法的意义。因此,衡量学生是否理解和掌握概念,不是看他会不会数概念或背概念,而是看能否在具体
此文档下载收益归作者所有