(新课改地区)高考数学核心素养测评三十均值不等式新人教B版.docx

(新课改地区)高考数学核心素养测评三十均值不等式新人教B版.docx

ID:55001387

大小:167.37 KB

页数:6页

时间:2020-04-25

(新课改地区)高考数学核心素养测评三十均值不等式新人教B版.docx_第1页
(新课改地区)高考数学核心素养测评三十均值不等式新人教B版.docx_第2页
(新课改地区)高考数学核心素养测评三十均值不等式新人教B版.docx_第3页
(新课改地区)高考数学核心素养测评三十均值不等式新人教B版.docx_第4页
(新课改地区)高考数学核心素养测评三十均值不等式新人教B版.docx_第5页
资源描述:

《(新课改地区)高考数学核心素养测评三十均值不等式新人教B版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、核心素养测评三十均值不等式(25分钟 50分)一、选择题(每小题5分,共35分)1.若mn=1,其中m>0,则m+3n的最小值等于(  )A.2B.2C.2D.【解析】选C.因为mn=1,其中m>0,所以n>0,所以m+3n≥2=2,当且仅当m=,n=时取等号,所以m+3n的最小值等于2.2.(2020·宿州模拟)已知函数y=x-4+(x>-1),当x=a时,y取得最小值b,则2a+3b等于(  )A.9 B.7 C.5  D.3【解析】选B.因为x>-1,所以x+1>0,所以y=x-4+=x+1+

2、-5≥2-5=1,当且仅当x+1=,即x=2时取等号,所以y取得最小值b=1,此时x=a=2,所以2a+3b=7.3.若log2x+log2y=1,则2x+y的最小值为(  )A.1B.2C.2D.4【解析】选D.因为log2x+log2y=1,所以log2xy=1,所以xy=2,所以2x+y≥2=4,当且仅当2x=y,即x=1,y=2时取等号.所以2x+y的最小值为4.4.(2019·温州模拟)若ab>0,则的最小值为(  )A.2B.C.3D.2【解析】选A.因为ab>0,所以=+≥2=2,当且

3、仅当=,即a=b时取等号.5.若a,b都是正数,且a+b=1,则(a+1)(b+1)的最大值为(  )A. B.2 C. D.4【解析】选C.由题意可知(a+1)(b+1)≤==,当且仅当a=b=时取等号.6.(2020·滨州模拟)已知a>0,b>0,4a+b=2,则+的最小值是(  )A.4  B.  C.5   D.9【解析】选B.因为a>0,b>0,4a+b=2,所以+=(4a+b)=≥=,当且仅当=,即a=,b=时取等号.7.已知非负数x,y满足xy+y2=1,则x+2y的最小值是(  )A

4、.B.2C.D.-【解析】选B.已知非负数x,y满足xy+y2=1,则有:y(x+y)=1,由已知可得:y≠0,由y>0,x为非负数,当x=0时,y=1,则x+2y=2;当x≠0时,y>0,x+y>0,则x+2y=y+(x+y)≥2=2,当且仅当y=x+y时取等号.即x=0,y=1时取等号.二、填空题(每小题5分,共15分)8.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系式为y=-x2+18x-25(x∈N*),则当每台机

5、器运转________年时,年平均利润最大,最大值是________万元. 【解析】每台机器运转x年的年平均利润为=18-,而x>0,故≤18-2=8,当且仅当x=5时等号成立,此时年平均利润最大,最大值为8万元.答案:5 89.已知a>b>0,则a2+的最小值是________. 【解析】因为a>b>0,所以b(a-b)≤=,当且仅当a=2b时等号成立.所以a2+≥a2+=a2+≥2=16,当且仅当a=2时等号成立.所以当a=2,b=时,a2+取得最小值16.答案:1610.(2019·阳泉模拟)

6、函数y=(x<1)的最大值为________,此时x的值为________. 【解析】函数y===x+1+=(x-1)++2(x<1),因为(1-x)+≥2,当且仅当x=0时,取等号,所以(x-1)+≤-2,当且仅当x=0时,取等号.故函数y=的最大值为0.答案:0 0(15分钟 25分)1.(5分)(多选)设a>0,b>0,则下列不等式中一定成立的是(  )A.a+b+≥2B.≥C.≥a+bD.(a+b)≥4【解析】选ACD.因为a>0,b>0,所以a+b+≥2+≥2,当且仅当a=b且2=,即a=

7、b=时取等号,故A成立;因为a+b≥2>0,所以≤,当且仅当a=b时取等号,所以≥不一定成立,故B不成立,因为≤=,当且仅当a=b时取等号,==a+b-≥2-,当且仅当a=b时取等号,所以≥,所以≥a+b,故C一定成立,因为(a+b)=2++≥4,当且仅当a=b时取等号,故D一定成立.2.(5分)正数a,b满足+=1,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则实数m的取值范围是(  )A.[3,+∞)B.(-∞,3]C.(-∞,6]D.[6,+∞)【解析】选D.因为a>0,b>0,

8、+=1,所以a+b=(a+b)=10++≥16,当且仅当=,即a=4,b=12时取等号.依题意,16≥-x2+4x+18-m,即x2-4x-2≥-m对任意实数x恒成立.又x2-4x-2=(x-2)2-6,所以x2-4x-2的最小值为-6,所以-6≥-m,即m≥6.3.(5分)(2019·聊城模拟)已知两圆x2+y2+4ax+4a2-4=0和x2+y2-2by+b2-1=0恰有三条公切线,若a∈R,b∈R,且ab≠0,则+的最小值为(  )A.3B.1C.D.【解析】选

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。