方程的根与函数的零点说课.doc

方程的根与函数的零点说课.doc

ID:54712850

大小:99.00 KB

页数:4页

时间:2020-04-20

方程的根与函数的零点说课.doc_第1页
方程的根与函数的零点说课.doc_第2页
方程的根与函数的零点说课.doc_第3页
方程的根与函数的零点说课.doc_第4页
资源描述:

《方程的根与函数的零点说课.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、必修1《方程的根与函数的零点》说课一.教材分析1教学内容分析《方程的根与函数的零点》是必修1第三章《函数的应用》一章的开始,其目的是使学生学会用二分法求方程近似解的方法,从中体会函数与方程之间的联系.函数零点是研究当函数f(x)的值为零时,相应的自变量的取值,反映在函数图象上,也就是函数图象与轴的交点横坐标.由于函数f(x)的值为零亦即f(x)=0,其本身已是方程的形式,因而函数的零点必然与方程有着不可分割的联系,事实上,若方程f(x)=0有解,则函数f(x)存在零点,且方程的根就是相应函数的零点

2、,也是函数图象与轴的交点横坐标.顺理成章的,方程的求解问题,可以转化为求函数零点的问题.这是函数与方程关系认识的第一步.方程的根与函数零点的研究方法,符合从特殊到一般的认识规律,从特殊的、具体的二次函数入手,建立二次函数的零点与相应二次方程的联系,然后将其推广到一般的、抽象的函数与相应方程的情形;零点存在性的研究,也同样采用了类似的方法,同时还使用了“数形结合思想”及“转化与化归思想”.方程的根与函数零点的关系研究,不仅为“用二分法求方程的近似解”的学习做好准备,而且揭示了方程与函数之间的本质联系

3、,这种联系正是中学数学重要思想方法——“函数与方程思想”的理论基础.可见,函数零点概念在中学数学中具有核心地位.2教学目标通过本课教学,要求学生:理解并掌握方程的根与相应函数零点的关系,在此基础上,学会将求方程的根的问题转化为求相应函数零点的问题;理解零点存在性定理,并能初步确定具体函数存在零点的区间.(1).能够结合具体方程(如二次方程),说明方程的根、相应函数图象与轴的交点横坐标以及相应函数零点的关系;(2).正确理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的

4、一个充分条件;了解函数零点只能不止一个;(3).能利用函数图象和性质判断某些函数的零点个数;(4).能顺利将一个方程求解问题转化为一个函数零点问题,写出与方程对应的函数;并会判断存在零点的区间(可使用计算器).3教学重点:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.4教学难点:准确理解零点存在性定理,并针对具体函数(或方程),能求出存在零点(或根)的区间.突破难点的方法:零点存在性定理的教学,则应引导学生观察函数图象与轴的交点的情况,来研究函数零点的情况,通过研

5、究:①函数图象不连续;②;③4,函数在区间上不单调;④,函数在区间上单调,等各种情况,加深学生对零点存在性定理的理解.二教学对象分析学生已有的认知基础是,初中学习过二次函数图象和二次方程,并且解过“当函数值为0时,求相应自变量的值”的问题,初步认识到二次方程与二次函数的联系,对二次函数图象与轴是否相交,也有一些直观的认识与体会.在高中阶段,已经学习了函数概念与性质,掌握了部分基本初等函数的图象与性质.三、预设教学对象问题1.零点概念的认识.零点的概念是在分析了众多图象的基础上,由图象与轴的位置关系

6、得到的一个形象的概念,学生可能会设法画出图象找到所有任意函数的可能存在的所有零点,但是并不是所有函数的图象都能具体的描绘出,所以在概念的接受上有一点的障碍.2.零点存在性的判断.正因为f(a)·f(b)<0且图象在区间[a,b]上连续不断,是函数f(x)在区间[a,b]上有零点的充分而非必要条件,容易引起思维的混乱就是很自然的事了.3.零点(或零点个数)的确定.学生会作二次函数的图象,但是要作出一般的函数图象(或图象的交点)就比较困难,而在这一节课最重要的恰恰就是利用函数图象来研究函数的零点问题.

7、这样就在零点(或零点个数)的确定上给学生带来一定的困难.四.教学媒体分析本节教学目标的实现,需要借助计算机或者计算器,一方面是绘制函数图象,通过观察图象加深方程的根、函数零点以及同时函数图象与轴的交点的关系;另一方面,判断零点所在区间过程中,一些函数值的计算也必须借助计算机或计算器.由于条件限制,以教师演示为主。五.教学过程设计1.方程的根与相应函数图象的关系复习总结一元二次方程与相应函数与轴的交点及其坐标的关系: 一元二次方程根的个数   图象与轴交点个数   图象与轴交点坐标    4意图:回

8、顾二次函数图象与轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备.问题一:上述结论对其他函数成立吗?为什么?在《几何画板》下展示如下函数的图象:、、、,比较函数图象与轴的交点和相应方程的根的关系。函数的图象与轴交点,即当,该方程有几个根,的图象与轴就有几个交点,且方程的根就是交点的横坐标.意图:通过各种函数,将结论推广到一般函数。2.函数零点概念对于函数,把使的实数叫做函数的零点.说明:函数零点不是一个点,而是具体的自变量的取值.3.方程的根与函数零点的关系方程有实数根

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。