固体材料中的原子扩散

固体材料中的原子扩散

ID:5423806

大小:977.00 KB

页数:50页

时间:2017-11-12

固体材料中的原子扩散_第1页
固体材料中的原子扩散_第2页
固体材料中的原子扩散_第3页
固体材料中的原子扩散_第4页
固体材料中的原子扩散_第5页
资源描述:

《固体材料中的原子扩散》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第七章固体材料中的原子扩散第一节扩散定律扩散现象:大家已经在气体和液体中知道,例如在房间的某处打开一瓶香水,慢慢在其他地方可以闻到香味,在清水中滴入一滴墨水,在静止的状态下可以看到他慢慢的扩散。扩散:由构成物质的微粒(离子、原子、分子)的热运动而产生的物质迁移现象称为扩散。扩散的宏观表现是物质的定向输送。说明在固体材料中也存在扩散,并且它是固体中物质传输的唯一方式。因为固体不能象气体或液体那样通过流动来进行物质传输。即使在纯金属中也同样发生扩散,用参入放射性同位素可以证明。扩散在材料的生产和使用中的物理过程有密切关系,

2、例如:凝固、偏析、均匀化退火、冷变形后的回复和再结晶、固态相变、化学热处理、烧结、氧化、蠕变等等。菲克第一定律菲克(A.Fick)在1855年总结出的,数学表达式为:J为单位时间通过垂直于扩散方向的单位面积的扩散物质的通量,单位是为溶质原子的浓度梯度;负号表示物质总是从浓度高处向浓度低的方向迁移;比例常数D称为扩散系数,单位为菲克第二定律引言菲克第一定律适用于稳态扩散,即在扩散的过程中各处的浓度不因为扩散过程的发生而随时间的变化而改变,也就是dc/dt=0。当物质分布浓度随时间变化时,由于不同时间在不同位置的浓度不相同

3、,浓度是时间和位置的函数C(x,t),扩散发生时不同位置的浓度梯度也不一样,扩散物质的通量也不一样。在某一dt的时间段,扩散通量是位置和时间的函数j(x,t)。菲克第二定律引出如图所示设为单位面积A上取dx的单元体,体积为Adx,在dt的时间内通过截面1流入的物质量为而通过截面2流出的物质量在dt时间内,单元体中的积有量为:菲克第二定律微分方程在dt时间内单元体的浓度变化量则需要的溶质量为菲克第二定律微分方程标准型在一维状态下非稳态扩散的微分方程,即为菲克第二定律的数学表达式,又称为扩散第二方程。若扩散系数D为常数,方

4、程可写成:三维情况,设在不同的方向扩散系数为相等的常数,则扩散第二方程为:半无限长棒中的扩散模型实际意义:低碳钢的渗碳处理,材料的原始含碳量为C0,热处理时外界条件保证其表面的碳含量始终维持在CP(碳势),经过一段时间后,求材料的表面附近碳含量的情况。扩散方程的误差函数解扩散方程的误差函数解扩散方程的误差函数解半无限长棒扩散方程的误差函数解解为:定义函数:高斯误差函数一维半无限长棒中扩散方程误差函数解:高斯误差函数无限长棒中的扩散模型实际意义:将溶质含量不同的两种材料焊接在一起,因为浓度不同,在焊接处扩散进行后,溶质浓

5、度随时间的会发生相应的变化。无限长棒扩散方程的误差函数解解为:利用高斯误差函数一维无限长棒中扩散方程误差函数解:扩散方程的误差函数解应用例一例一:有一20钢齿轮气体渗碳,炉温为927℃,炉气氛使工件表面含碳量维持在0.9%C,这时碳在铁中的扩散系数为D=1.28x10-11m2s-1,试计算为使距表面0.5mm处含碳量达到0.4%C所需要的时间?解:可以用半无限长棒的扩散来解:扩散方程的误差函数解应用例二例二:上例中处理条件不变,把碳含量达到0.4%C处到表面的距离作为渗层深度,推出渗层深度与处理时间之间的关系,层深达

6、到1.0mm则需多少时间?解:因为处理条件不变在温度相同时,扩散系数也相同,因此渗层深度与处理时间之间的关系:因为x2/x1=2,所以t2/t1=4,这时的时间为34268s=9.52hr第二节扩散的微观机制原子热运动和扩散系数的关系间隙扩散机制空位扩散机制原子热运动和扩散系数的关系图示出晶体中两个相邻的晶面1、2,面间距为α,截面的大小为单位面积。假定在1、2面上的溶质原子数(面密度)分别为n1和n2.。每个原子的跃迁频率Γ是相同的,跃迁方向是随机的,从晶面1到晶面2(或者相反)的几率都是P。如果n1>n2,在单位时

7、间从晶面1到晶面2的净流量为原子热运动和扩散系数的关系从微观分析表明,扩散系数与扩散方向相邻晶面的面间距α、原子的跃迁频率Γ、跃迁几率P的关系。下面对不同的机制进行具体分析。间隙扩散机制扩散机制:溶质原子存在晶格的间隙中,如Fe中的C、N、H等元素,扩散过程是间隙原子从所处在的间隙,挤过晶格原子的空隙,到达相邻的另一个间隙。溶质原子从一个间隙到另一个间隙的过程,在间隙中的平衡位置的能量为G1,从晶格原子中挤过去,最高能量达到G2,存在能垒ΔG=G2-G1,根据统计物理分析可知,超出平均能量ΔG的原子几率为间隙扩散机制(

8、2)在面心立方(fcc)中延[100]方向间隙扩散:其中A为常数,Z相邻的间隙数,ν振动频率。间隙扩散中的几率P间隙扩散机制(3)扩散系数为:D0为与晶格结构和扩散方向有关的常数,ΔG为一个原子的扩散激活能,工程中也常用Q表示1mol的激活能。扩散系数与温度之间的关系空位扩散机制扩散机制:在置换固溶体中,由于晶格中存在空位,空位周

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。