欢迎来到天天文库
浏览记录
ID:54235781
大小:37.90 KB
页数:11页
时间:2020-04-15
《图形的变换知识链接.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、北师大版小学数学第九册《图形的变换》课后链接一、轴对称与轴对称图形1、什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。2、什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。②轴对称是反映两个图形
2、的特殊位置、大小关系;轴对称图形是反映一个图形的特性。联系:①两部分都完全重合,都有对称轴,都有对称点。②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。lAB4.线段的垂直平分线:垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。⑵如果两个图形成轴对称,那
3、么对称轴是对称点连线的垂直平分线。6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。二、线段、角的轴对称性1.线段的轴对称性:①线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线。②线段的垂直平分线上的点到线段两端的距离相等。③到线段两端距离相等的点,在这条线段的垂直平分线上。结论:线段的垂直平分线是到线段两端距离相等的点的集合2.角的轴对称性:①角是轴对称图形,对称轴是角平分线所在的直线。②角平分线上的点到角的两边距离相等。③到角的两边距离相等的点,在这个角的平分线上。
4、结论:角的平分线是到角的两边距离相等的点的集合三、等腰三角形的轴对称性1、等腰三角形的性质:①等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴;②等腰三角形的两个底角相等;(简称“等边对等角”)③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(简称“三线合一”)2、等腰三角形的判定:①如果一个三角形有2个角相等,那么这2个角所对的边也相等;(简称“等角对等边”)②直角三角形斜边上的中线等于斜边上的一半。3.等边三角形:①等边三角形的定义:三边相等的三角形叫做等边三角形或正三角形。②等边三角形的性质:等边
5、三角形是轴对称图形,并且有3条对称轴;等边三角形的每个角都等于600。③等边三角形的判定:3个角相等的三角形是等边三角形;有两个角等于600的三角形是等边三角形;有一个角等于600的等腰三角形是等边三角形。4.三角形的分类:斜三角形:三边都不相等的三角形。三角形只有两边相等的三角形。等腰三角形等边三角形四、等腰梯形的轴对称性1、等腰梯形的定义:①梯形的定义:一组对边平行,另一组对边不平行为梯形。梯形中,平行的一组对边称为底,不平行的一组对边称为腰。②等腰梯形的定义:两腰相等的梯形叫做等腰梯形。2、等腰梯形的性质:①等腰梯
6、形是轴对称图形,是两底中点的连线所在的直线。②等腰梯形同一底上两底角相等。③等腰梯形的对角线相等。ADCB3、等腰梯形的判定:①在同一底上的2个底角相等的梯形是等腰梯形。②补充:对角线相等的梯形是等腰梯形。四、旋转1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。)
7、 2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。 3.中心对称图形与中心对称: 中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。 中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。 4.中心对称的性质: 关于中心对称的两个图形是全等形。 关于中心对称的两个图形,对称点连线都经过对
8、称中心,并且被对称中心平分。 关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。五、图案的基本概念图案的历史古老而久远,它是与实际生活结合最密切的种艺术形式,是人类物质需求与精神追求共同发展的产物。图案是设计的基础,学习掌握图案的形式美语言和构成法则,对我们今后从事各个专业的装饰美术设计有十分重要的意义
此文档下载收益归作者所有