欢迎来到天天文库
浏览记录
ID:53776363
大小:996.50 KB
页数:7页
时间:2020-04-06
《专题14 导数在函数研究中的应用-2016年的高考数学(文)一轮复习精品资料(原卷版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【考情解读】1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次). 2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).【重点知识梳理】1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果
2、在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a
3、,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:[来源:Z.xx.k.Com]①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.[来源:学科网]【高频考点突破】考点一 利用导数研究函数的单调性例1 已知函数f(x
4、)=ex-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.7汇聚名校名师,奉献精品资源,打造不一样的教育!【拓展提高】(1)利用导数的符号来判断函数的单调性;(2)已知函数的单调性求参数范围可以转化为不等式恒成立问题;(3)f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)不恒为零.应注意此时式子中的等号不能省略,否则漏解.【变式探究】 (1)设函数f
5、(x)=x3-(1+a)x2+4ax+24a,其中常数a>1,则f(x)的单调减区间为_____________________.(2)已知a>0,函数f(x)=x3-ax在[1,+∞)上是单调递增函数,则a的取值范围是________.考点二 利用导数求函数的极值例2 (2014·福建)已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x26、函数的极值点.所以在求出导函数的零点后一定要注意分析这个零点是不是原函数的极值点.(2)若函数y=f(x)在区间(a,b)内有极值,那么y=f(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.【变式探究】 设f(x)=,其中a为正实数.(1)当a=时,求f(x)的极值点;(2)若f(x)为R上的单调函数,求a的取值范围.[来源:Z#xx#k.Com]考点三 利用导数求函数的最值例3 (2014·四川改编)已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对7、数的底数.7汇聚名校名师,奉献精品资源,打造不一样的教育!设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值.【拓展提升】(1)求解函数的最值时,要先求函数y=f(x)在(a,b)内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.(2)可以利用列表法研究函数在一个区间上的变化情况.【变式探究】 已知函数f(x)=(x-k)ex.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.【真题感悟】【28、015高考福建,文12】“对任意,”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【2015高考湖南,文8】设函数,则是()A、奇函数,且在(0,1)上是增函数B、奇函数,且在(0,1)上是减函数C、偶函数,且在(0,1)上是增函数D、偶函数,且在(0,1)上是减函数【2015高考安徽,文21】已知函数(Ⅰ)求的定义域,并讨论的单调性;(Ⅱ)若,求在内的极值.【2015高考北京,文
6、函数的极值点.所以在求出导函数的零点后一定要注意分析这个零点是不是原函数的极值点.(2)若函数y=f(x)在区间(a,b)内有极值,那么y=f(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.【变式探究】 设f(x)=,其中a为正实数.(1)当a=时,求f(x)的极值点;(2)若f(x)为R上的单调函数,求a的取值范围.[来源:Z#xx#k.Com]考点三 利用导数求函数的最值例3 (2014·四川改编)已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对
7、数的底数.7汇聚名校名师,奉献精品资源,打造不一样的教育!设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值.【拓展提升】(1)求解函数的最值时,要先求函数y=f(x)在(a,b)内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.(2)可以利用列表法研究函数在一个区间上的变化情况.【变式探究】 已知函数f(x)=(x-k)ex.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.【真题感悟】【2
8、015高考福建,文12】“对任意,”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【2015高考湖南,文8】设函数,则是()A、奇函数,且在(0,1)上是增函数B、奇函数,且在(0,1)上是减函数C、偶函数,且在(0,1)上是增函数D、偶函数,且在(0,1)上是减函数【2015高考安徽,文21】已知函数(Ⅰ)求的定义域,并讨论的单调性;(Ⅱ)若,求在内的极值.【2015高考北京,文
此文档下载收益归作者所有