欢迎来到天天文库
浏览记录
ID:53676700
大小:344.00 KB
页数:7页
时间:2020-04-05
《初三《圆》章节知识点复习专题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距
2、离都相等的一条直线。有关概念:圆——到定点的距离等于定长的点的集合圆的内部——可以看作是圆心的距离小于半径的点的集合圆的外部——可以看作是圆心的距离大于半径的点的集合等圆——圆心不相同,半径相等的圆;同心圆——圆心相同,半径不等的圆。弧——圆上任意两点间的部分叫做圆弧,简称弧。按与半圆的大小关系可分为:优弧和劣弧等弧——在同圆或等圆中,能够重合的两条弧弦——连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。弦心距——圆心到直线的距离弓形——弧与所对的弦所组成得图形。圆的内部——到圆心的距离小于半径的点的集合叫做圆的内部圆的外部——到圆心的距离大于半径的点
3、的集合叫做圆的外部圆心角:顶点在圆心的角圆周角:顶点在圆周上,并且两边都和圆相交的角叫做圆周角。弦切角、圆内角、圆外角及性质:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。顶点在圆外的角(两边与圆相交)的度数等于其所截两弧度数差的一半.顶点在圆内的角(两边与圆相交)的度数等于其及其对顶角所截弧度数和的一半.确定圆的条件:定理——不在同一直线上的三点确定一个圆。相关概念及性质——三角形的外接圆圆的内接三角形三角形的外心三角形的外心的性质:三角形的外心到各个顶点的距离相等。定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角-7-二、圆的对称性:圆是轴对称
4、图形,其对称轴是任意一条过圆心的直线;垂径定理——垂直于弦的直径平分这条弦,并且平分弦所对的两条弧垂径定理的推论①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧④在同圆或等圆中,两条平行弦所夹的弧相等依据垂径定理及其推论①②③可概括为定理:对于一条直线和一个圆来说,如果具备下列五个条件中的任意两个,那么也具备其他三个:①垂直弦②过圆心③平分弦④平分弦所对的优弧⑤平分弦所对的劣弧即:①是直径②③④弧弧⑤弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平
5、行弦所夹的弧相等。即:在⊙中,∵∥∴弧弧圆是中心对称图形,对称中心是圆心;其特有旋转不变性。1、圆心角、弧、弦、弦心距之间相等关系定理——在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①;②;③;④弧弧推论——在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等2、圆周角与圆心角的关系:同弧所对的圆周角等于它所对的圆心的角的一半。即:∵和是弧所对的圆心角和圆周角∴3、圆周角定理的推论:推论1:同
6、弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙中,∵、都是所对的圆周角∴-7-推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在⊙中,∵是直径或∵∴∴是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在△中,∵∴△是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。4、圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在⊙中,∵四边形是内接四边形∴三、圆的相关位置关系(1)点与圆的位置关系1、点在圆内点在
7、圆内;2、点在圆上点在圆上;3、点在圆外点在圆外;(2)直线与圆的位置关系1、直线与圆相离无交点;2、直线与圆相切有一个交点;3、直线与圆相交有两个交点;-7-切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵且过半径外端∴是⊙的切线直线和圆位置关系的判定:①依据定义②依据圆心到直线距离d与圆的半径r的数量关系圆的切线的判定:①定义②依据d=r③用判定定理——圆的切线证明的两种情况:①连半径,证垂直;②作垂直,证半径。(2)性质定理:切线
此文档下载收益归作者所有