欢迎来到天天文库
浏览记录
ID:53575757
大小:314.28 KB
页数:5页
时间:2020-04-19
《基于小波包分解的滚动轴承故障信号频域特征提取方法研究.pdf》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、基于小波包分解的滚动轴承故障信号频域特征提取方法研究丘世因,袁锐波(昆明理工大学机电工程学院,云南昆明650500)ResearchoftheRollingElementBearingFaultSignalFrequencyDomainFeatureExtractionMethodBasedontheWaveletPacketDecompositionQIUShi—yin,YUANRui—bo(FacultyofMechanicalandElectricalEngineering,KunmingUniversityofScie
2、nceandTechnology,Kunming650500,China)摘要:对轴承故障信号进行3层小波包分解,重cientsbywhichthebearingfaultsignalswerere—构第3层所有节点,提取重构信号频谱的峰值作为constructed.Thepeakvaluesextractedfromthe故障特征点并构成特征空间,计算特征空间的平均reconstructingsignalspectrumconstructedafea—欧氏距离,平均欧氏距离最小时对应的节点即为最turespace.Then,
3、theminimumaverageEuclidean优小波包节点,重构最优节点得到最优重构信号并distancecalculatedfromthefeaturespaceindicated从中提取特征点构成最优特征空间,最后,对最优特theoptimalwaveletpacketnode.Theoptimalfea—征空间进行K均值聚类。对4种转速下轴承的4turespacecouldbeconstructedbythefeature种状态进行特征提取与模式识别试验,结果表明,运pointsextractedfromthesi
4、gnalsreconstructedby用该方法能有效提取轴承故障的特征,并使故障特theoptimalwaveletpacketnodes.Finally,theopti—征空间具有最低的类内离散度,获得了较高的模式malfeaturespacewasusedfortheK—meansclus—识别准确率。tering.Thefeatureextractionandpatternrecogni—关键词:轴承故障;特征提取;小波包分解;最优tiontestofthefourkindsofbearingconditionsun—
5、节点;K均值聚类;模式识别derfourkindsofrotationspeedswasdetailed.The中图分类号:TH133;TP391testresultsshowthismethod,whichcanextract文献标识码:Athebearingfaultfeatureefficientlyandmakethe文章编号:1001—2257(2014)05—0012—05faultfeaturespacehavethe1owestwithin—classAbstract:Firstofall,thebearing
6、faultsignalsscatter,wonsahighpatternrecognitionaccuracy.weredecomposedintothreelayerswaveletcoeffi一Keywords:bearingfault;featureextraction;waveletpacketdecomposition;optimalnode;K—收稿日期:2013—11—06基金项目:云南省自然科学基金重点项目(2010CD030)meansclustering;patternrecognitiontirecath
7、eterinsertion:algorithmsandexperiments[J].TheInternationalJournalofRoboticsResearch,[J].TheInternationalJournalofRoboticsResearch,2010,29(13):1661—1683.2009,28(9):I101—1117.[9]SearsP,DupontP.AsteerableneedletechnologyusingE7]CaminoWW.Activetipcontrolforsmalldiameter
8、curvedconcentrictubes[A].IEEE/RSJInternationalcatheters:Powertransmissionandtransductionre~ConferenceonIntelligentRobotsandSystems[C].quir
此文档下载收益归作者所有