圆中的压轴题.doc

圆中的压轴题.doc

ID:53564278

大小:532.50 KB

页数:11页

时间:2020-04-04

圆中的压轴题.doc_第1页
圆中的压轴题.doc_第2页
圆中的压轴题.doc_第3页
圆中的压轴题.doc_第4页
圆中的压轴题.doc_第5页
资源描述:

《圆中的压轴题.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、圆中的压轴题常考知识点:1、说明某条线是切线(两种常考方案,一种是说明垂直,另一种是说明距离相等)2、利用K形相似或其他特殊条件(等腰三角形,直角三角形)求解线段长度3、利用切线性质求解线段长度例1:如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解析式.解:(1)证明:依题意可知,A(0,2)∵A(0,2),P(4,2),∴AP∥x轴.∴∠OAP=90°,且点A在⊙O上

2、,∴PA是⊙O的切线;(2)解法一:连接OP,OB,作PE⊥x轴于点E,BD⊥x轴于点D,∵PB切⊙O于点B,∴∠OBP=90°,即∠OBP=∠PEC,又∵OB=PE=2,∠OCB=∠PEC.∴△OBC≌△PEC.∴OC=PC.(或证Rt△OAP≌△OBP,再得到OC=PC也可)设OC=PC=x,则有OE=AP=4,CE=OE-OC=4-x,在Rt△PCE中,∵PC2=CE2+PE2,∴x2=(4-x)2+22,解得x=,……………………4分∴BC=CE=4-=,∵OB·BC=OC·BD,即×2×=××BD,∴BD=.∴OD===,

3、由点B在第四象限可知B(,);解法二:连接OP,OB,作PE⊥x轴于点E,BD⊥y轴于点D,∵PB切⊙O于点B,∴∠OBP=90°即∠OBP=∠PEC.又∵OB=PE=2,∠OCB=∠PEC,∴△OBC≌△PEC.∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC也可)设OC=PC=x,则有OE=AP=4,CE=OE-OC=4-x,在Rt△PCE中,∵PC2=CE2+PE2,∴x2=(4-x)2+22,解得x=,………………………………4分∴BC=CE=4-=,∵BD∥x轴,∴∠COB=∠OBD,又∵∠OBC=∠BDO=90

4、°,∴△OBC∽△BDO,∴==,即==.∴BD=,OD=.由点B在第四象限可知B(,);(3)设直线AB的解析式为y=kx+b,由A(0,2),B(,),可得;解得∴直线AB的解析式为y=-2x+2.【考点解剖】本题考查了切线的判定、全等、相似、勾股定理、等面积法求边长、点的坐标、待定系数法求函数解析式等.【解题思路】(1)点A在圆上,要证PA是圆的切线,只要证PA⊥OA(∠OAP=90°)即可,由A、P两点纵坐标相等可得AP∥x轴,所以有∠OAP+∠AOC=180°得∠OAP=90°;(2)要求点B的坐标,根据坐标的意义,就是要

5、求出点B到x轴、y轴的距离,自然想到构造Rt△OBD,由PB又是⊙O的切线,得Rt△OAP≌△OBP,从而得△OPC为等腰三角形,在Rt△PCE中,PE=OA=2,PC+CE=OE=4,列出关于CE的方程可求出CE、OC的长,△OBC的三边的长知道了,就可求出高BD,再求OD即可求得点B的坐标;(3)已知点A、点B的坐标用待定系数法可求出直线AB的解析式.【方法规律】从整体把握图形,找全等、相似、等腰三角形;求线段的长要从局部入手,若是直角三角形则用勾股定理,若是相似则用比例式求,要掌握一些求线段长的常用思路和方法.例2:如图所示,

6、AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.考点:切线的判定;等腰三角形的判定与性质;垂径定理;圆周角定理;相似三角形的判定与性质.3718684分析:(1)连结OC,由C是劣弧AE的中点,根据垂径定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根据切线的判定定理即可得到结论;(2)连结AC、BC,根据圆周角定理得∠ACB=90°,∠B=∠1,而

7、CD⊥AB,则∠CDB=90°,根据等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF;(3)在Rt△ADF中,由于∠DAF=30°,FA=FC=2,根据含30度的直角三角形三边的关系得到DF=1,AD=,再由AF∥CG,根据平行线分线段成比例得到DA:AG=DF:CF然后把DF=1,AD=,CF=2代入计算即可.解:(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°

8、,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵AC弧=CE弧,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:在Rt△ADF中,∠DAF=30°,FA=FC=2,∴DF=AF=1,∴AD=DF=,∵AF∥CG,∴DA:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。