2013高考数学 解题方法攻略 不等式2 理.doc

2013高考数学 解题方法攻略 不等式2 理.doc

ID:53116317

大小:793.50 KB

页数:32页

时间:2020-04-01

2013高考数学 解题方法攻略 不等式2 理.doc_第1页
2013高考数学 解题方法攻略 不等式2 理.doc_第2页
2013高考数学 解题方法攻略 不等式2 理.doc_第3页
2013高考数学 解题方法攻略 不等式2 理.doc_第4页
2013高考数学 解题方法攻略 不等式2 理.doc_第5页
资源描述:

《2013高考数学 解题方法攻略 不等式2 理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、不等式发挥经典价值 提高复习效率何为数学经典题目?数学经典题目就是经过历史选择出来的最有价值的经久不衰的题目。每个经典题目,都经得起人们的拷问和时间的考验;每个经典题目,总是蕴含着某种重要的数学思想和方法;每个经典题目,总有其独特的教育价值和教学功能;每个经典题目,都能穿越时间的深度和厚度而又最终超越时间经久弥新、与时俱进。数学教科书上的例习题有不少题目堪当经典,本文以其中一道经典题目为例,说明经典题目在复习教学中的潜能挖掘与应用,以期抛砖引玉。 题目 已知,且,求证。 本题目是普通高中课程标准实验教科书数

2、学选修不等式选讲人教版第十页习题第11题。这是一道经典的条件不等式证明题,解题入口宽、方法多样,对本题进行一题多解训练,可达到举一反三触类旁通,解读一题沟通一片以点带面的复习效果。 证法1(配方法)因为,所以,所以,所以,当且仅当且且,即时等号成立。 点评 本解法先消元,将表示成只含的二次式,并将此式当作是以为主元的二次三项式进行配方,再将配方后余下的部分再次配方,然后用实数平方的非负性,从而使问题得到解决。 证法2(构造二次函数)因为,所以,于是,32故当时,最小,此时,所以,所以,当且仅当时等号成立。 

3、点评 本解法通过构造函数将不等式证明问题转化为函数的最值问题。先消元,将表示成只含的二次式,然后选为主元,将此式当作是含有参数的以为自变量的二次函数,求出的最小值,的最小值就是的最小值,从而使问题获解。 证法3(用重要不等式)因为,所以,当且仅当时等号成立。 点评 将已知等式两边平方是运用重要不等式的关键。 证法4(用等号成立的条件构造平方和)由所证不等式等号成立的条件得,,即,所以,当且仅当时等号成立。 证法5(用等号成立的条件构造配偶不等式)由所证不等式等号成立的条件可构造如下不等式:,,,三式相加得,

4、32,所以,当且仅当时等号成立。 点评 证法4和证法5注意到等号成立的条件是问题获得简解的关键之所在。 证法6(用柯西不等式)由三元柯西不等式得,即。 证法7(用向量数量积不等式)构造向量,,由向量数量积不等式得,,即,当且仅当时等号成立。 证法8(利用直线与圆有公共点解题)把当作参数当作变量,则即可看作是直角坐标系下的一条直线的方程,设则,此方程可看作是圆心是坐标原点半径为的圆的方程。因为这两个方程所组成的方程组有解,所以直线与圆有公共点,故圆心到直线的距离不大于半径。故,即有解,所以,解得则,即。 点评

5、 本解法需要有方程思想、数形结合思想和化归意识,化静为动,动中求静。根据“方程组有解,则直线与圆有公共点,从而直线到圆心的距离不大于半径”列不等式,进而使问题得以解决。 证法9(三角换元法)设则,设32。由得,所以,由正弦函数的有界性得,两边平方解得,故。 证法10(构造概率模型)设随机变量取值为时的概率均为,因为,所以,所以,即,当且仅当时等号成立。 证法11(用琴生不等式)构造函数,因为是上的凹函数,由琴生不等式得,,即,所以,当且仅当时等号成立。 证法12(用点面距离公式)可看作是空间直角坐标系下的一

6、个平面的方程,可看作是这个平面内任意一点到原点O的距离的平方,由垂线段最短知,当OP与平面垂直时,OP最短从而最小,由点面距离公式得点O到平面的的距离为:,所以,即。 凹凸函数、琴生不等式是高等数学的内容,但与初等函数关系密切,是初等数学与高等数学的衔接处,点面距离公式是大学空间解析几何的内容,但可当作是平面解析几何点线距离公式在空间的一个类比拓广,这些知识可开阔学生的视野,类比推理有利于发现新知识和数学思想方法的迁移。 32以上从十二个不同的角度来思考解决一个经典不等式的证明问题,消元法、配方法、构造法,

7、函数和方程思想,化归和转化思想,数形结合思想都是高中数学重要的数学思想方法,在以上十二种解法中体现得淋漓尽致。一题多解有利于培养发散思维、求异思维和综合运用多种知识解决问题的能力,有利于拓宽解题思路,有利于创造性思维的培养。发挥经典以一当十,解析一题复习一片。对二元一次不等式确定平面区域的探究湖北省阳新县高级中学邹生书  人教版高二数学第二册(上)二元一次不等式确定平面区域属于新增内容,大纲要求是:了解二元一课次不等式的几何意义,能用平面区域表示二元一次不等式(组)。笔者对这部内容作了一些研究,本文将得出的

8、重要结论及其在解题中的应用与大家进行交流,希望能对这节内容的教学和学习有所帮助。  命题1:已知二元一次函数①点P1(x1,y1)在直线Ax+By+C=0上②若B≠0,则有点P1(x1,y1)在直线Ax+By+C=0上方点P1(x1,y1)在直线Ax+By+C=0下方③若A≠0,则有点P1(x1,y1)在直线Ax+By+C=0右方点P1(x1,y1)在直线Ax+By+C=0左方分析:①易证,②、③证法类似,下面对

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。