改进极限学习机在滚动轴承振动故障诊断中的应用.pdf

改进极限学习机在滚动轴承振动故障诊断中的应用.pdf

ID:52981764

大小:453.46 KB

页数:5页

时间:2020-04-05

改进极限学习机在滚动轴承振动故障诊断中的应用.pdf_第1页
改进极限学习机在滚动轴承振动故障诊断中的应用.pdf_第2页
改进极限学习机在滚动轴承振动故障诊断中的应用.pdf_第3页
改进极限学习机在滚动轴承振动故障诊断中的应用.pdf_第4页
改进极限学习机在滚动轴承振动故障诊断中的应用.pdf_第5页
资源描述:

《改进极限学习机在滚动轴承振动故障诊断中的应用.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、机械设计与制造第1期MachineryDesign&Manufacture2016年1月改进极限学习机在滚动轴承振动故障诊断中的应用黄勤芳,程艳,陈伟珍z(1.广西职业技术学院机械与汽车技术系,广西南宁530027;2.广西水利电力职业技术学院机电工程系,广西南宁530023)摘要:滚动轴承广泛应用于机械、铁路运输、航天航空等领域,在旋转机械设备的正常稳定运行中占据着至关重要的位置,其振动故障的准确、快速诊断是保证钡.械设备正常稳定运行的必要手段,因此,研究一种能够有效诊断滚动轴承振动故障的方法具有重要意义。针对滚动轴承振动信号具有非平稳性、非线性和影响因素相互影响相互作

2、用的特点,结合小波分析理论对滚动轴承振动信号进行故障特征提取,通过借鉴支持向量机的分类思想,从最优化角度出发,引入结构风险最小化原理对极限学习机进行改进及优化,并结合改进后的方法构建了滚动轴承振动故障诊断模型。仿真结果表明,改进的极限学习机进一步提高了滚动轴承振动故障诊断的效率和分类准确率,为滚动轴承的振动故障诊断提供了新思路和新方法。关键词:滚动轴承;振动故障诊断;极限学习机;最优化中图分类号:TH16文献标识码:A文章编号:1001—3997(2016)01—0080204ApplicationofRollingBearingforFaultDiagnosisBase

3、danImprovedExtremeLearningMachineHUANGQin—fang。CHENGYan,CHENWei—zhen(1.DepartmentofMechanicalandAutomotiveTechnology,GuangxiPolytechnic,GuangxiNanning530027,China;2.DepartmentofMechanicalandElectricalEngineering,GuangxiVocationalandTechnicalCollegeofHydraulicandElectric,GuangxiNanning5300

4、23,China)Abstract:Rollingbearingsarewidelyusedinmachinery,railwaytransportation,aerospaceetc.Rollingbearingholdsascantpositioninthenormaloper~ionofmechanicalequ~ment,anditspreciseandf~tdiagnosiswillbeanessentialiTl~an$forensuringthesteadyrunoftheequipmentbeforevibrationfaulthappens.hishig

5、hlydemandedthatasignificantresearchonrollingbearingfauhdiagnosisisfocused0Sincethereexistedcomplexnonlinearityandinst~ilityinthevibrationsofrollingbearing,thewaveletanalysisbasedsignalprocessingmethodWasproposed,aimedtoachievethenoisereductionandenergyfeaturesextractioraThen,fromthepointo

6、foptimization,structuralriskminimizationWasappl&dintheextremelearningclassification.Itimprovedthemodelgeneralizationpeformaneeandincreasedthefaultdiagnosisefficiencybytransformingtheoriginalempiricalriskintothestructuralriskminimization,Plus,animprovedclassifcationalgorithmbasedonextremel

7、earningmachine珊introducedtorebuildthevibrationfaultdiagnosismode1.inawaytoenhancetheaccuracyofvibrationfaultdiagnosisandSOastoprovideanewideaforthevibrationfauhdiagnosisofrollingbearing.KeyWords:RollingBearing;FaultDiagnosis;ExtremeLearningMachine;OptimizationMethod

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。