混凝土结构设计规范若干问题的讨论.pdf

混凝土结构设计规范若干问题的讨论.pdf

ID:52964170

大小:106.74 KB

页数:5页

时间:2020-04-04

混凝土结构设计规范若干问题的讨论.pdf_第1页
混凝土结构设计规范若干问题的讨论.pdf_第2页
混凝土结构设计规范若干问题的讨论.pdf_第3页
混凝土结构设计规范若干问题的讨论.pdf_第4页
混凝土结构设计规范若干问题的讨论.pdf_第5页
资源描述:

《混凝土结构设计规范若干问题的讨论.pdf》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第35卷第4期建 筑 结 构2005年4月混凝土结构设计规范若干问题的讨论周献祥徐俊广(总后勤部建筑设计研究院 北京100036)(总参信息工程大学测绘学院 郑州450052)[提要]鉴于钢筋混凝土双向板塑性铰线理论和条带法已足可满足设计需要,设计规范没必要再提出弯矩调幅法。结合工程设计与施工的实际情况,分析讨论了双向板与单向板的分界、梁侧面腰筋的设置、柱拉筋勾住封闭箍筋、按简支计算的梁端上部构造钢筋设置、板筋在端部与混凝土梁或混凝土墙整体浇筑的锚固长度以及环境类别与保护层厚度的确定等问题,提出了自己的观点。[关键词]钢筋混凝土 设计规范 塑性理论 配筋构造 保护层厚

2、度1DiscussiononSomeProvisionsofCodeforDesignofConcreteStructure(GB50010—2002)/ZhouXianxiang,Xu2Junguang(1ArchitecturalDesignInstituteofthePLAGeneralLogisticsDepartment,Beijing100036,China;2Insti2tuteofSurveyingandMapping,InformationEngineeringUniversityofPLA,Zhengzhou450052,China)Abstrac

3、t:Becausetheyieldlinemethodandthestripmethodoftwo2wayslabareconvenientfordesignpractice,itisnotnecessarytoproposeadjustmentmethodofbendingmomentsoftwo2wayslab.Basedondesignandconstructionpractice,thedividinglineoftwo2wayslabandone2wayslab,theendanchoragelengthofbarsinslabswithassumedsim

4、plysupportedends,theminimumconcretecoverofstructurememberswhenitstwosidessubjecttodifferentenvi2ronmentsrespectively,andotherdetailsofreinforcementarediscussed.Keywords:reinforcedconcrete;designcode;plastictheory;adjustmentmethod;reinforcementdetailing一、关于钢筋混凝土双向板弯矩调幅法的讨论座扭矩也从0逐渐递增。可见,由

5、于扭矩作用的影响,混凝土结构设计规范(GB50010—2002)第51311四边支承双向板不存在板支座弯矩和跨中弯矩之间的条指出双向板“经过弹性分析求得内力后,也可对支座简单线性叠加关系,所以即使要采用调幅法,也比连续弯矩进行调幅,并确定相应的跨中弯矩”。同时规范第梁等杆系体系复杂得多,其物理意义也不明确,工程师51312条又指出“承受均布荷载周边支承的双向矩形未必乐于采用。板,可采用塑性铰线法或条带法等塑性极限分析方法其次,图1所示典型板算例表明(见表1),除B2的进行承载能力极限状态设计”。笔者认为双向板采用M1外,无论是跨中还是支座,按塑性铰线理论确定的塑性铰线

6、法或条带法足可满足工程设计的需要,规范[1]弯矩系数均小于弹性方法的相应系数,即弹性理论没必要再引入弯矩调幅法。的安全储备过大,而塑性铰线理论更接近于实际受力首先,根据弹性理论,由于受扭矩的影响,四边支状态。文[2]的试验结果(见表2)佐证了这一结论。承双向板中不存在杆系体系(连续梁、单向板)中支座弯矩平均值的绝对值与跨中弯矩之和等于简支跨中弯矩的关系式。如L1=L2=L,泊桑比ν=0时,对四边[1]2简支板,跨中最大弯矩M1=M2=010368qL,对于[1]四边固支板,支座和跨中最大弯矩绝对值之和为22M支+M中=(010511+010176)qL=010687q

7、L。表图1 典型板支座形式明四边固支板支座和跨中最大弯矩绝对值之和远大于简支板跨中弯矩,这主要是因为对于不同的支座条件,第三,虽然按塑性铰线理论求得的解是其极限荷扭矩的影响是不一样的。根据经典薄板弹性理论,当载的一个上限解,理论上过高估计了板的极限强度,是支座边界条件为简支时,边界上弯矩为0,扭矩不等于偏于不安全的。而实际上,按塑性铰线理论设计的板,0;当为固支边界时,边界上弯矩不等于0,而扭矩为0。其极限强度是有保证的,这主要是因为板的塑性铰线[3]因此,当固支边支座约束程度逐渐放松时,伴随着支座理论忽略了两个重要因素:弯矩的逐渐减小、该方向跨中弯

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。