高二数学球的体积和表面积.ppt

高二数学球的体积和表面积.ppt

ID:52916281

大小:1.13 MB

页数:25页

时间:2020-04-14

高二数学球的体积和表面积.ppt_第1页
高二数学球的体积和表面积.ppt_第2页
高二数学球的体积和表面积.ppt_第3页
高二数学球的体积和表面积.ppt_第4页
高二数学球的体积和表面积.ppt_第5页
资源描述:

《高二数学球的体积和表面积.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、西伯利亚--球的体积和表面积--学习球的知识要注意和圆的有关指示结合起来.所以我们先来回忆圆面积计算公式的导出方法.球的体积我们把一个半径为R的圆分成若干等分,然后如上图重新拼接起来,把一个圆近似的看成是边长分别是当所分份数不断增加时,精确程度就越来越高;当份数无穷大时,就得到了圆的面积公式.即先把半球分割成n部分,再求出每一部分的近似体积,并将这些近似值相加,得出半球的近似体积,最后考虑n变为无穷大的情形,由半球的近似体积推出准确体积.球的体积分割求近似和化为准确和问题:已知球的半径为R,用R表示球的体积.AOB2C2球的体积A

2、OOROA球的体积球的体积球的体积R高等于底面半径的旋转体体积对比球的体积例1.钢球直径是5cm,求它的体积.(变式1)一种空心钢球的质量是142g,外径是5cm,求它的内径.(钢的密度是7.9g/cm2)例题讲解1(变式1)一种空心钢球的质量是142g,外径是5cm,求它的内径.(钢的密度是7.9g/cm2,精确到0.1cm)解:设空心钢球的内径为2xcm,则钢球的质量是答:空心钢球的内径约为4.5cm.由计算器算得:例题讲解12)若每小块表面看作一个平面,将每小块平面作为底面,球心作为顶点便得到n个棱锥,这些棱锥体积之和近似

3、为球的体积.当n越大,越接近于球的体积,当n趋近于无穷大时就精确到等于球的体积.1)球的表面是曲面,不是平面,但如果将表面平均分割成n个小块,每小块表面可近似看作一个平面,这n小块平面面积之和可近似看作球的表面积.当n趋近于无穷大时,这n小块平面面积之和接近于甚至等于球的表面积.球面不能展开成平面图形,所以求球的表面积无法用展开图求出,如何求球的表面积公式呢?回忆球的体积公式的推导方法,是否也可借助于这种极限思想方法来推导球的表面积公式呢?下面,我们再次运用这种方法来推导球的表面积公式.球的表面积球的表面积第一步:分割球面被分割成

4、n个网格,表面积分别为:则球的表面积:则球的体积为:OO球的表面积第二步:求近似和由第一步得:OO球的表面积第三步:化为准确和如果网格分的越细,则:“小锥体”就越接近小棱锥O球的表面积(变式2)把钢球恰好放入一个正方体的有盖纸盒中,至少要用多少纸?用料最省时,球与正方体有什么位置关系?球内切于正方体侧棱长为5cm例题讲解2例2.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积。ABCDD1C1B1A1O分析:正方体内接于球,则由球和正方体都是中心对称图形可知,它们中心重合,则正方体对角

5、线与球的直径相等。ABCDD1C1B1A1O例题讲解2OABC例3已知过球面上三点A、B、C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=2cm,求球的体积,表面积.解:如图,设球O半径为R,截面⊙O′的半径为r,例题讲解2OABC例3.已知过球面上三点A、B、C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=2cm,求球的体积,表面积.例题讲解2了解球的体积、表面积推导的基本思路:分割→求近似和→化为标准和的方法,是一种重要的数学思想方法—极限思想,它是今后要学习的微积分部分“定积分”内容的一个应用;熟练掌

6、握球的体积、表面积公式:课堂小结课堂作业习题9.11P.745、6、7、8预习小结与复习P.75—P.772.一个正方体的顶点都在球面上,它的棱长是4cm,这个球的体积为___cm3.83.有三个球,一球切于正方体的各面,一球切于正方体的各侧棱,一球过正方体的各顶点,求这三个球的体积之比_________.1.球的直径伸长为原来的2倍,体积变为原来的_倍.练习一课堂练习4.若两球体积之比是1:2,则其表面积之比是______.练习二1.若球的表面积变为原来的2倍,则半径变为原来的___倍.2.若球半径变为原来的2倍,则表面积变为原

7、来的___倍.3.若两球表面积之比为1:2,则其体积之比是______.课堂练习7.将半径为1和2的两个铅球,熔成一个大铅球,那么这个大铅球的表面积是______.5.长方体的共顶点的三个侧面积分别为,则它的外接球的表面积为_____.6.若两球表面积之差为48π,它们大圆周长之和为12π,则两球的直径之差为______.练习二课堂练习谢谢再 见

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。