资源描述:
《平面与平面垂直的判定教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.3.2平面与平面垂直的判定教案目标:1.理解二面角及其平面角的概念,能确认图形中的已知角是否为二面角的平面角.2.掌握二面角的平面角的一般作法,会求简单的二面角的平面角:3.掌握两个平面互相垂直的概念,能用定义和定理判定面面垂直。教案重点:二面角的概念和二面角的平面角的作法,面面垂直的判定教案难点:二面角的平面角的一般作法及面面垂直的判定教案过程:复习两平面的位置关系:(1)如果两个平面没有公共点,则两平面平行若α∩β=,则α∥β.(2)如果两个平面有一条公共直线,则两平面相交若α∩β=AB,则α
2、与β相交.两平面平行与相交的图形表示如图1.图1导入新课思路1.(情境导入)为了解决实际问题,人们需要研究两个平面所成的角.修筑水坝时,为了使水坝坚固耐用必须使水坝面与水平面成适当的角度;发射人造地球卫星时,使卫星轨道平面与地球赤道平面成一定的角度.为此,我们引入二面角的概念,研究两个平面所成的角.思路2.(直接导入)前边举过门和墙所在平面的关系,随着门的开启,其所在平面与墙所在平面的相交程度在变,怎样描述这种变化呢?今天我们一起来探究两个平面所成角问题.推进新课新知探究提出问题-12-/12①二面角
3、的有关概念、画法及表示方法.②二面角的平面角的概念.③两个平面垂直的定义.④用三种语言描述平面与平面垂直的判定定理,并给出证明.⑤应用面面垂直的判定定理难点在哪里?讨论结果:①二面角的有关概念.二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫二面角的面.二面角常用直立式和平卧式两种画法:如图2(教师和学生共同动手).直立式:平卧式:(1)(2)图2二面角的表示方法:如图3中,棱为AB,面为α、β的二面角,记作二面角α-AB-β.有时为了方便也可在α、
4、β内(棱以外的半平面部分)分别取点P、Q,将这个二面角记作二面角P-AB-Q.图3如果棱为l,则这个二面角记作αlβ或PlQ.②二面角的平面角的概念.如图4,在二面角αlβ的棱上任取点O,以O为垂足,在半平面α和β内分别作垂直于棱的射线OA和OB,则射线OA和OB组成∠AOB.-12-/12图4再取棱上另一点O′,在α和β内分别作l的垂线O′A′和O′B′,则它们组成角∠A′O′B′.因为OA∥O′A′,OB∥O′B′,所以∠AOB及∠A′O′B′的两边分别平行且方向相同,即∠AOB=∠A′O′B′.
5、从上述结论说明了:按照上述方法作出的角的大小,与角的顶点在棱上的位置无关.由此结果引出二面角的平面角概念:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.图中的∠AOB,∠A′O′B′都是二面角α—l—β的平面角.③直二面角的定义.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说二面角是多少度.平面角是直角的二面角叫做直二面角.教室的墙面与地面,一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的.两个平面互相垂直的概念和平
6、面几何里两条直线互相垂直的概念相类似,也是用它们所成的角为直角来定义,二面角既可以为锐角,也可以为钝角,特殊情形又可以为直角.两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.直二面角的画法:如图5.图5④两个平面垂直的判定定理.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.两个平面垂直的判定定理符号表述为:α⊥β.两个平面垂直的判定定理图形表述为:如图6.-12-/12图6证明如下:已知AB⊥β,AB∩β=B,ABα.求证:α⊥β.分析:
7、要证α⊥β,需证α和β构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其中一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由ABα,知AB、CD共面.∵AB⊥β,CDβ,∴AB⊥CD,垂足为点B.在平面β内过点B作直线BE⊥CD,则∠ABE是二面角αCDβ的平面角.又AB⊥BE,即二面角αCDβ是直二面角,∴α⊥β.⑤应用面面垂直的判定定理难点在于:在一个平面内找到另一个平面的垂线,即要证面面垂直转化为证线线垂直.应用示例思路1例1如图7,⊙O在平面α内,AB是⊙O的直
8、径,PA⊥α,C为圆周上不同于A、B的任意一点.图7求证:平面PAC⊥平面PBC.证明:设⊙O所在平面为α,由已知条件,PA⊥α,BCα,∴PA⊥BC.∵C为圆周上不同于A、B的任意一点,AB是⊙O的直径,-12-/12∴BC⊥AC.又∵PA与AC是△PAC所在平面内的两条相交直线,∴BC⊥平面PAC.∵BC平面PBC,∴平面PAC⊥平面PBC.变式训练如图8,把等腰Rt△ABC沿斜边AB旋转至△ABD的位置,使CD=AC,图8(1)求证:平面ABD⊥平