欢迎来到天天文库
浏览记录
ID:5277202
大小:278.83 KB
页数:7页
时间:2017-12-07
《计算机专业英语学术论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ComputerTechnologyandApplication3(2012)361-367⋯MonitoringFreewayIncidentDetectionUsingaHotellingControlChartJoonseLim’一.YoungSeonJeongandYoungsulJeong1.PolytechnicInstituteofNewYorkUniversity,SixMetroTechCenter,Brooklyn.NewYo11201.USA2.GeorgetownPreparator
2、ySchool,10900RockvillePike,NorthBethesda,MD20852,USA3.DepartmentofIndustrialandSystemsEngineering,KhalifaUniversityofSeienee,TechnologyandResearch,AbuDhabi,UAE4.DepartmentofNaturalSciences,WashingtonBaptistUniversity,Annandale,VA22003,USAReceived:March12,2
3、012/Accepted:March31,2012/Published:May25,2012Abstract:Inreal-lifefreewaytransportationsystem,afewnumberofincidentobservation(veryrareevent)isavailablewhiletherearelargenumbersofnormalconditiondataset.Mostofresearchesonfreewayincidentdetectionhaveconsidere
4、dtheincidentdetectionproblemasclassificationone.However,becauseofinsuficiencyofincidentevents,mostofpreviousresearcheshaveutilizedsimulatedincidenteventstodevelopfreewayincidentdetectionmodels.Inordertoovercomethisdrawback.thispaperproposesawavelet-basedHo
5、tellingcontrolchartforfreewayincidentdetection.whichintegratesawavelettransformintoanabnorma1detectionmethod.Firstly,wavelettransformextractsusefu1featuresfromnoisyoriginaltraficobservations.1eadingtoreducethedimensionalityofinputvectors.Then.aHotellingcon
6、trolchartdescribesadecisionboundarywithonlynormaItraficobservationswiththeselectedfeaturesinthewaveletdomain.Unliketheexistingincidentdetectionalgorithms.whichrequirelotsofincidentobservationstoconstructincidentdetectionmodels,theproposedapproachcandecidea
7、decisionboundarygivenonlynormaltrainingobservations.TheproposedmethodisevaluatedincomparisonwithCaliforniaalgorithm.Minnesotaalgorithmandconventionalneuralnetworks.Theexperimentalresultspresentthattheproposedalgorithminthispaperisapromisingaltemativeforfre
8、ewayautomaticincidentdetections.Keywords:Freewayincident,incidentdetectionalgorithms,Hotellingcontrolchart,wavelettransforms,featureselection1.Intr0ductiOnThesealgorithmsincludeCaliforniaalgorithm[1],Minnesot
此文档下载收益归作者所有