半导体光电效应及其应用.doc

半导体光电效应及其应用.doc

ID:52674287

大小:52.00 KB

页数:5页

时间:2020-03-29

半导体光电效应及其应用.doc_第1页
半导体光电效应及其应用.doc_第2页
半导体光电效应及其应用.doc_第3页
半导体光电效应及其应用.doc_第4页
半导体光电效应及其应用.doc_第5页
资源描述:

《半导体光电效应及其应用.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、半导体光电效应及其应用量子力学无疑是20世纪最伟大的科学成就之一,它的诞生是人类对自然界,尤其对微观世界的认识有了质的飞跃,对许多造福人类的高新技术的发展起了奠基、催生和巨大的推动作用。自20世纪中期开始,电子工业取得了长足的进步,目前已成为世界上最大的产业,而其基础为半导体材料。为了适应电子工业的巨大需求,从第一代半导体材料:硅、锗(1822年,瑞典化学家白则里用金属钾还原氟化硅得到了单质硅。)发展到第二代半导体材料:Ⅲ——Ⅴ族化合物,再到现在的第三代半导体材料:宽带隙半导体。半导体领域取得了突飞猛进的发展。一、光电效应光照射到某些物质上,引起物质的电性质发生变化,也就是

2、光能量转换成电能。这类光致电变的现象被人们统称为光电效应(Photoelectriceffect)。这一现象是1887年赫兹在实验研究麦克斯韦电磁理论时偶然发现的。1905年,爱因斯坦在《关于光的产生和转化的一个启发性观点》一文中,用光量子理论对光电效应进行了全面的解释。1916年,美国科学家密立根通过精密的定量实验证明了爱因斯坦的理论解释,从而也证明了光量子理论。光电效应分为光电子发射、光电导效应和光生伏特效应。前一种现象发生在物体表面,物体在光的照射下光电子飞到物体外部的现象,又称外光电效应。后两种现象发生在物体内部,物体受光照射后,其内部的原子释放出电子并不溢出物体表

3、面,而是仍留在内部,称为内光电效应。内、外光电效应在光电器件和光电子技术中具有重要的作用,根据这些效应可制成不同的光电转换器件(光敏器件)。通过大量的实验总结出光电效应具有如下实验规律:  1、每一种金属在产生光电效应是都存在一极限频率(或称截止频率),即照射光的频率不能低于某一临界值。相应的波长被称做极限波长(或称红限波长)。当入射光的频率低于极限频率时,无论多强的光都无光电子逸出。  2、光电效应中产生的光电子的速度与光的频率有关,而与光强无关。  3、光电效应的瞬时性。实验发现,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的,响应时间不超过

4、十的负九次方秒(1ns)。4、入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积是逸出的光电子数目。1、外光电效应不言而喻,就是物体在光的照射下光电子飞到物体外部的现象,光电效应的发现与最初的研究就是主要通过外光电效应来进行的。2.光电导效应光吸收使半导体中形成非平衡载流子(光生载流子),载流子浓度的增大使其电导率σ增大,所引起的附加电导率称为光电导。光电导效应是光电子器件的基础。半导体材料对光的吸收系数随光的波长而变化,所以光电导具有一定的光谱分布。3.光生伏特效应如果光线照射在太阳能电池上并且光在界面层被吸收,具有足够能量的光子能够在P型硅和N型硅中将电子从

5、共价键中激发,以致产生电子-空穴对。界面层附近的电子和空穴在复合之前,将通过空间电荷的电场作用被相互分离。非平衡的载流子从产生处向势垒区(结区)运动;非平衡的电子和空穴在结区势场的作用下向相反的方向运动而分离。P区的非平衡电子穿过p-n结进入n区,而n区的非平衡空穴进入p区,从而在p型和n型区有电荷积累。由于p区边界积累非平衡空穴,n区边界积累非平衡电子,产生一个与平衡p-n结内电场方向相反的光生电场,于是在p区和n区建立了光生电动势。此时可在硅片的两边加上电极并接入电压表。对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。通过光照在界面层产生的电子-空穴对越多

6、,电流越大。界面层吸收的光能越多,界面层即电池面积越大,在太阳能电池中形成的电流也越大。二、光电效应的应用1.光电探测器光电探测器是通过电过程探测光信号的半导体器件。伴随着相干和非相干光源相远红外波段及紫外波段的扩展,对高速、高灵敏光电探测器的需求迅速增加,通常来讲,光电探测器包括三个基本过程:1)入射光产生载流子;2)通过某种电流增益机制形成载流子的输入和倍增;3)载流子形成端电流,提供输出信号。在红外波段(0.8~1.6um)的光纤通信系统中,光电探测器十分重要,它可对光信号进行解调,即将光的变化转化为电学量的变化,然后将电学量放大并进一步处理。对于此类应用,光电探测器

7、必须满足若干要求,例如在工作波段上要有高的灵敏度、快速的响应速度和低噪声。另外,光电探测器的体积应该较小,工作偏置电压和电流低,并且在使用条件下可靠工作。1983年至1985年间,人们首次研究了量子阱中导带内、价带内的非带间跃迁的红外吸收。第一个基于束缚态到束缚态子带间跃迁的功能性异质结量子阱红外光电探测器有Levine等人在1987年实现。本例中gaas为量子阱。其厚度约为5nm,通常是掺杂浓度为10^17cm^(-3)量级的n型半导体。势垒层不掺杂,其厚度约为30~50nm之间。典型周期数在20~50之间。对于

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。