欢迎来到天天文库
浏览记录
ID:52627836
大小:1.16 MB
页数:42页
时间:2020-04-12
《2017_2018学年高中数学第四章函数应用2实际问题的函数建模课件北师大版必修.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第四章函数应用§2实际问题的函数建模看实际问题[核心必知]整体特征函数表达式方法知识提示:f(0)=1,表示没用清水清洗时,蔬菜上的农药将保持原样.[问题思考]2.某公司为了适应市场需求对产品结构进行了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用常用五种函数模型中的哪种?提示:对数型函数.1.某种商品在30天内每件的销售价格P(元)与时间t(t∈N+)(天)的函数关系用如图的两条线段表示,该商品在30天内日销售量Q(件)与时间t(t∈N+)(天)之间的关系如下表:第t天5152030Q件3525201
2、0(1)根据提供的图像,写出该商品每件的销售价格P与时间t的函数关系式;(2)根据表中提供的数据,确定日销售量Q与时间t的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量).在用函数刻画实际问题的过程中,除了用函数解析式刻画外,函数图像也能够发挥很好的作用,因此,我们应当注意提高读图的能力.另外,本例题涉及到了分段函数,分段函数是刻画现实问题的重要模型.1.甲、乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供了两个方面的信息,如图.甲调查表明:每个甲鱼池平均产量从第1年1万只
3、甲鱼上升到第6年2万只.乙调查表明:甲鱼池个数由第1年30个减少到第6年10个.请你根据提供的信息说明:(1)第2年甲鱼池的个数及全县出产甲鱼总数;(2)到第6年这个县的甲鱼养殖业的规模比第1年是扩大了还是缩小了?说明理由;(3)第几年的养殖规模最大?最大养殖量是多少?用函数模型解决实际问题的常见类型及解法:(1)解函数关系已知的应用题①确定函数关系式y=f(x)中的参数,求出具体的函数解析式y=f(x);②讨论x与y的对应关系,针对具体的函数去讨论与题目有关的问题;③给出实际问题的解,即根据在函数关系的讨论中所获得的理论参数值给出答案.(2)解函数关系未知的应用题①阅读理解
4、题意看一看可以用什么样的函数模型,初步拟定函数类型;②抽象函数模型在理解问题的基础上,把实际问题抽象为函数模型;③研究函数模型的性质根据函数模型,结合题目的要求,讨论函数模型的有关性质,获得函数模型的解;④得出问题的结论根据函数模型的解,结合实际问题的实际意义和题目的要求,给出实际问题的解.2.某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销售量就增加10个.为了每日获得最大利润,此商品
5、的售价应定为每个多少元?3.18世纪70年代,德国科学家提丢斯发现金星、地球、火星、木星、土星离太阳的平均距离(天文单位)如下表:他研究行星排列规律后预测在火星与木星之间应该有一颗大的行星,后来果然发现了谷神星,但不算大行星,它可能是一颗大行星爆炸后的产物,请你推测谷神星的位置,在土星外面是什么星?它与太阳的距离大约是多少?对于此类实际应用问题,关键是建立适当的函数关系式,再解决数学问题,最后验证并结合问题的实际意义作出回答,这个过程就是先拟合函数再利用函数解题.函数拟合与预测的一般步骤是:(1)能够根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出“最贴近”的直线或
6、曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况一般不会发生.因此,使实际点尽可能均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了.(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.3.某商场经营一批进价是每件30元的商品,在市场销售中发现,此商品的销售单价x元与日销售量y件之间有如下关系(见下表):(1)在所给的坐标系中,根据表中提供的数据描出实数对(x,y)对应
7、的点,并确定y与x的一个函数关系式y=f(x);(2)设经营此商品的日销售利润为P元,根据上述关系式写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?销售单价x(元)…30404550…日销售量y(件)…6030150…1.一辆汽车在某段路程中的行驶路程s关于时间t变化的图像如图所示,那么图像所对应的函数模型是( )A.分段函数B.二次函数C.指数函数D.对数函数解析:选A 根据图像知,在不同的时间段内,行驶路程关于时间变化的图像不同,故对应函数模型应为分段函数.4.如图表
此文档下载收益归作者所有