欢迎来到天天文库
浏览记录
ID:52554429
大小:262.50 KB
页数:15页
时间:2020-04-10
《高中数学 3.1.1 两角差的余弦公式课件 新人教A版必修4.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.1.1两角差的余弦函数1.两角差的余弦公式思考1:设α,β为两个任意角,你能判断cos(α-β)=cosα-cosβ恒成立吗?cos(45°-30°)≠cos45°-cos30°sin60°sin120°cos60°cos120°cos(120°-60°)sin30°sin60°cos30°cos60°cos(60°-30°)思考2:我们设想cos(α-β)的值与α,β的三角函数值有一定关系,观察下表中的数据,你有什么发现?思考3:一般地,你猜想cos(α-β)等于什么?cos(α-β)=cosαcosβ+sinαsinβ思考4:如图,设α,β为锐角,且α>β,角α的终边与单位圆的交点为
2、P1,∠P1OP=β,那么cos(α-β)表示哪条线段长?MPP1Oxycos(α-β)=OM思考5:如何用线段分别表示sinβ和cosβ?PP1OxyAsinβcosβ思考6:cosαcosβ=OAcosα,它表示哪条线段长?sinαsinβ=PAsinα,它表示哪条线段长?PP1OxyAsinαsinβcosαcosβBC思考7:利用OM=OB+BM=OB+CP可得什么结论?sinαsinβcosαcosβPP1OxyABCMcos(α-β)=cosαcosβ+sinαsinβxyPP1MBOAC+11思考8:公式cos(α-β)=cosαcosβ+sinαsinβ称为差角的余弦公式,记
3、作,该公式有什么特点?如何记忆?例1利用余弦公式求cos15°的值.例2已知β是第三象限角,求cos(α-β)的值.2.例题讲解3.巩固深化4.小结作业1、两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.2、牢记公式3.在差角的余弦公式中,α,β既可以是单角,也可以是复角,运用时要注意角的变换,如,2β=(α+β)-(α-β)等.同时,公式的应用具有灵活性,解题时要注意正向、逆向和变式形式的选择.作业
此文档下载收益归作者所有