欢迎来到天天文库
浏览记录
ID:52520240
大小:384.00 KB
页数:11页
时间:2020-03-28
《(天津大学)现代设计方法习题及答案.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、习题一1)论述产品设计过程中系统设计、参数设计及公差设计的目的与作用。系统设计根据产品的功能要求,进行产品的系统功能和原理设计,即将功能需求映射为物理原理,从而得到产品的初始设计方案。通过对不同方案分析比较,得到合理的初始设计方案。参数设计基于初始设计方案,建立产品的系统模型,以性能、质量、成本等为优化目标,对产品的系统参数优化设计,通过系统参数的合理化,实现性能、质量、成本的综合最优。公差设计在参数设计基础上,进一步以性能、质量、成本综合最优为目标,对参数的公差(如需波动的范围)进行优化。2.)用黄金分割法求解,初始区间为[0,3],迭代2次。(10)第一轮迭代:第二轮迭代:3
2、)论述传统或经典优化方法与现代优化方法的特点。经典优化方法:1.基于经典的线性、非线性数学规划理论;2.一般需要解析形式的优化模型,只能处理模型简单的优化问题;3.得到的结果一般为局部最优解。现代优化方法1.基于遗传、模拟退火等现代优化算法,并结合实验设计方法;2.不需要解析形式的优化模型,可以处理模型复杂、多目标优化问题;3.可以得到全局最优解。4)论述梯度法的原理,并用梯度法求解,初始点X(0)=[1,1](一维优化用解析法),迭代2次。梯度法的原理:基于沿负梯度方向,目标函数在当前位置下降最快这一事实,将n维优化问题求解转化为沿负梯度方向的一维搜索,迭代求优过程。搜索方向:
3、最优步长:迭代公式:收敛判据:解:5)论述优化问题的收敛准则。数值搜索寻优过程的搜索结果构成一序列,该序列收敛于优化问题的解。根据序列理论,序列收敛的条件为:相邻两轮搜索得到的近似极值点“相对距离”小于给定精度,即:6)论述坐标轮换法的原理和局限性原理:将n维问题转化为依次沿n个坐标方向轮回进行一维搜索。局限性:1)计算效率低,适合变量n<10的情况;2)若目标函数具有脊线,算法将出现病态:沿两个坐标方向均不能使函数数值下降,误认为最优点。7)论述内点法、外点法和混合罚函数法的特点和适用性。内点法:1)初始点为严格内点;2)仅能处理不等式约束;3)可能存在一维搜索超界问题;3)可
4、以得到多个可行方案。外点法:1)初始点可任选;2)可以处理等式和不等式约束;3)不存在内点法中的一维搜索超界问题;4)一般仅能得到一个最终方案。混合罚函数法:1)初始点可任选;2)可以处理等式和不等式约束;3)对已经满足的不等式约束用内点法构造惩罚项,对等式约束和未被满足的不等式约束用外点法构造惩罚项;4)采用外推法提高收敛速度。8)何谓K-T(Kuhn-Tuker)条件?用Kuhn-Tucker验证约束优化问题在点Kuhn-Tucker条件成立。(15)K-T条件:约束极值点存在的条件。设为非线性规划问题的约束极值点,且在全部等式约束及不等式约束条件中共有q个约束条件为起作用的
5、约束,即,(i≠j,i+j=1,2,…,q
6、单峰区间的进退步法,并确定函数的一个搜索区间(单峰区间)。设初始点x0=0,初始步长h0=0.5。(1)进退法是一种通过比较函数值大小来确定单峰区间的方法。对于给定的初始点x1和步长h,计算f(x1)和x2=x1+h点函数值f(x2)。若f(x1)>f(x2),说明极小点在x1的右侧,将步长增加一倍,取x3=x2+2h。若f(x1)7、割法求解,初始区间为[0,2],迭代2次。(10)第一轮迭代:第二轮迭代:3)写出优化模型的标准式。4)论述梯度法的原理,并用梯度法求解,初始点X(0)=[1,1](一维优化用解析法),迭代2次。梯度法的原理:基于沿负梯度方向,目标函数在当前位置下降最快这一事实,将n维优化问题求解转化为沿负梯度方向的一维搜索,迭代求优过程。5)论述搜索法求解一维和多维优化问题的收敛准则(1)一维优化的基本思路是通过数值迭代逐步缩减极值点所在的单峰区间,当区间长度达到给定精度,即可认为优化过程收敛
7、割法求解,初始区间为[0,2],迭代2次。(10)第一轮迭代:第二轮迭代:3)写出优化模型的标准式。4)论述梯度法的原理,并用梯度法求解,初始点X(0)=[1,1](一维优化用解析法),迭代2次。梯度法的原理:基于沿负梯度方向,目标函数在当前位置下降最快这一事实,将n维优化问题求解转化为沿负梯度方向的一维搜索,迭代求优过程。5)论述搜索法求解一维和多维优化问题的收敛准则(1)一维优化的基本思路是通过数值迭代逐步缩减极值点所在的单峰区间,当区间长度达到给定精度,即可认为优化过程收敛
此文档下载收益归作者所有