船舶横摇变参数LSSVM在线预报方法.pdf

船舶横摇变参数LSSVM在线预报方法.pdf

ID:52496549

大小:462.86 KB

页数:11页

时间:2020-03-28

船舶横摇变参数LSSVM在线预报方法.pdf_第1页
船舶横摇变参数LSSVM在线预报方法.pdf_第2页
船舶横摇变参数LSSVM在线预报方法.pdf_第3页
船舶横摇变参数LSSVM在线预报方法.pdf_第4页
船舶横摇变参数LSSVM在线预报方法.pdf_第5页
资源描述:

《船舶横摇变参数LSSVM在线预报方法.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第16卷第9期船舶力学Vol·16No-92012年9月业!!璺!堕墅里竺!塑坐!!!:婴!!———————————————————————————————————————————————————————————————_^————————————————————————一一一一ArticleID:1007—7294(2012)09—1024-11OnlinePredictionofShipRollingbasedonVaryingParametersLSSVMLIUSheng,YANGZhen(C011egeofAutoma

2、tion,HarbinEngineeringUniversity,Harbin150001,China)Abstract:1nordertoimprovetheaccuracyandreal—timenatureofpredictionmodelofshiproilingmotion。anonlinereal-timepredictionmethodispresented,whichcombineschaostheoryandleastsquaressuppoftvectormaehine(LSSVM).Aimingatthe

3、problemthatthefixedparameterofforecast—ingmodelcannotbeadaptivelyadjustedwithdynamicchangeofshiprollingmotion,avaryingpa—rameteronlinemodelingmethodisproposedbasedonLSSVM.ThreeLSSVMsareusedtomodelpar—a11e11vandthewholepredictionprocessesaredividedintoaninitialstagea

4、ndseveralpredictionstages.ThenextpredictingLSSVMisselectedattheendofeachstage,atthesametime,thekernelDaran】etersoftheothertwoLSSVMsareresetaccordingtoheuristicrules,whichareusedascompar。ativeLSSVMsforthefollowingpredictingstages.Theexperimentsofshiprollingtimeseries

5、predic‘tionaremade.Thesimulationresultsindicatethatreal-timepredictionroot—mean—squareerroroftheproposedmethodisabout6.85%,whichhasbetteradaptabilitycomparedtofixedparameterpredic‘tinT1method.Keywords:ship;roll;chaos;leastsquaressupportvectormachine(LSSVM);varyingpa

6、rameter;forecastingCLCnumber:U661.32Documentcode:A1IntroductionRecentlv,supportvectormachinetheorydevelopsrapidlyinapplicationofshipmotionrood—elingfield0<.Thereasonisthatsupportvectormachinecanobtainglobaloptimalsolution,pos—sessgoodgeneralizationabilityandprovidep

7、owerfulmethodsandtoolsforpracticalproblemswhicharesmallsampleandnonlinear.OnlinelearningalgorithmofLSSVM【qcantrackdynam。iccharacteristicsoftime—varyingnonlinear,whichisconsequentlyappliedtopredictionofshiDmotion.However,hyper—parametersofonlinetrainingalgorithmarese

8、tsubjectivelyandallthesamplesusethesamehyper—parameters,whichmeanthathyper—parameterscannotadjustautomaticallyassampleschange.Changecharac

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。