欢迎来到天天文库
浏览记录
ID:52496549
大小:462.86 KB
页数:11页
时间:2020-03-28
《船舶横摇变参数LSSVM在线预报方法.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第16卷第9期船舶力学Vol·16No-92012年9月业!!璺!堕墅里竺!塑坐!!!:婴!!———————————————————————————————————————————————————————————————_^————————————————————————一一一一ArticleID:1007—7294(2012)09—1024-11OnlinePredictionofShipRollingbasedonVaryingParametersLSSVMLIUSheng,YANGZhen(C011egeofAutoma
2、tion,HarbinEngineeringUniversity,Harbin150001,China)Abstract:1nordertoimprovetheaccuracyandreal—timenatureofpredictionmodelofshiproilingmotion。anonlinereal-timepredictionmethodispresented,whichcombineschaostheoryandleastsquaressuppoftvectormaehine(LSSVM).Aimingatthe
3、problemthatthefixedparameterofforecast—ingmodelcannotbeadaptivelyadjustedwithdynamicchangeofshiprollingmotion,avaryingpa—rameteronlinemodelingmethodisproposedbasedonLSSVM.ThreeLSSVMsareusedtomodelpar—a11e11vandthewholepredictionprocessesaredividedintoaninitialstagea
4、ndseveralpredictionstages.ThenextpredictingLSSVMisselectedattheendofeachstage,atthesametime,thekernelDaran】etersoftheothertwoLSSVMsareresetaccordingtoheuristicrules,whichareusedascompar。ativeLSSVMsforthefollowingpredictingstages.Theexperimentsofshiprollingtimeseries
5、predic‘tionaremade.Thesimulationresultsindicatethatreal-timepredictionroot—mean—squareerroroftheproposedmethodisabout6.85%,whichhasbetteradaptabilitycomparedtofixedparameterpredic‘tinT1method.Keywords:ship;roll;chaos;leastsquaressupportvectormachine(LSSVM);varyingpa
6、rameter;forecastingCLCnumber:U661.32Documentcode:A1IntroductionRecentlv,supportvectormachinetheorydevelopsrapidlyinapplicationofshipmotionrood—elingfield0<.Thereasonisthatsupportvectormachinecanobtainglobaloptimalsolution,pos—sessgoodgeneralizationabilityandprovidep
7、owerfulmethodsandtoolsforpracticalproblemswhicharesmallsampleandnonlinear.OnlinelearningalgorithmofLSSVM【qcantrackdynam。iccharacteristicsoftime—varyingnonlinear,whichisconsequentlyappliedtopredictionofshiDmotion.However,hyper—parametersofonlinetrainingalgorithmarese
8、tsubjectivelyandallthesamplesusethesamehyper—parameters,whichmeanthathyper—parameterscannotadjustautomaticallyassampleschange.Changecharac
此文档下载收益归作者所有