机器视觉检测分解.doc

机器视觉检测分解.doc

ID:52452366

大小:425.50 KB

页数:13页

时间:2020-03-27

机器视觉检测分解.doc_第1页
机器视觉检测分解.doc_第2页
机器视觉检测分解.doc_第3页
机器视觉检测分解.doc_第4页
机器视觉检测分解.doc_第5页
资源描述:

《机器视觉检测分解.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、研究背景:产品表面质量是产品质量的重要组成部分,也是产品商业价值的重要保障。产品表面缺陷检测技术从最初的依靠人工目视检测到现在以CCD和数字图像处理技术为代表的计算机视觉检测技术,大致经历了三个阶段,分别是传统检测技术阶段、无损检测技术阶段、计算机视觉检测技术阶段。[]传统检测技术(1)人工目视检测法(2)频闪检测法无损检测技术(1)涡流检测法(2)红外检测法(3)漏磁检测法计算机视觉检测技术(1)激光扫描检测法(2)CCD检测法采用荧光管等照明设备,以一定方向照射到物体表面上,使用CCD摄像机来扫描物体表面,并将获得的图像信号输

2、入计算机,通过图像预处理、缺陷区域的边缘检测、缺陷图像二值化等图像处理后,提取图像中的表面缺陷的相关特征参数,再进行缺陷图像识别,从而判断出是否存在缺陷及缺陷的种类信息等。优点:实时性好,精确度高,灵活性好,用途易于扩充,非接触式无损检测。基于机器视觉的缺陷检测系统优点:集成化生产缩短产品进入市场时间改进生产流程100%质量保证实时过程监控提高产量精确检测100%检测由于经济和技术原因国内绝大多数图像处理技术公司都以代理国外产品为主,没有或者很少涉足拥有自主知识产权的机器视觉在线检测设备,对视觉技术的开发应用停留在比较低端的小系统

3、集成上,对需要进行大数据量的实时在线检测的研究很少也很少有成功案例,但是随着国内经济发展和技术手段不断提高对产品质量检测要求就更高,对在线检测设备的需求也就更大具有巨大的市场潜力。机器视觉图像处理技术是视觉检测的核心技术铸件常见缺陷:砂眼气孔缩孔披缝粘砂冷隔掉砂毛刺浇不足缺陷变形问题的提出:1.水渍、污迹等不属于铸件缺陷,但由于其外观形貌与缺陷非常类似,因此易被检测系统误识为缺陷。从目前发表的文献来看,对于伪缺陷的识别率较低。2.不同种缺陷之间可能存在形状、纹理等方面的相似性,造成缺陷误判。国外研究发展现状:20世纪90年代后,基

4、于机器视觉检测系统的自动化功能和实用化水平得到了进一步的提高。1990年芬兰RautaruukkiNewTechnology公司研制了Smartivis表面检测系统[],该系统具有自学习分类功能,应用机器学习方法对决策树结构进行自动设计优化。1996年美国Cognex公司研发了一套iLearn自学习分类器软件系统并应用于其研制了iS-2000自动检测系统。通过这两套系统的无缝衔接,极大地提高了检测系统实时的运算速度,有效的改进了传统自学习分类方法在算法执行速度、数据实时吞吐量、样本训练集规模及模式特征自动选择等方面的不足之处[]。

5、2004年Parsytec公司发布了新一代表面质量检测产品Parsytec5i,该系统运用了自学习神经网络分类方法进行缺陷分类,将表面质量信息输入到支持决策信息中,不仅可以对产品的表面质量进行检测和评价,还能预测潜在质量问题,并将检测信息提供给使用者进行整合和利用[]国内研究发展现状:2005年北航周正干等人提出了一种新型的数学形态学滤波与计算机视觉算法相结合的缺陷自动提取方法。2009年北京科技大学徐科等采用线形激光进行连铸坯表面裂纹的在线检测,并用AdaBoosting分类器成功地实现了对表面裂纹、水痕、渣痕、氧化铁皮和振痕等

6、5种缺陷和伪缺陷样本的识别。北京科技大学高效轧制国家工程研究中心研制开发了具有全部自主知识产权的冷轧带钢[19-20]和热轧带钢表面在线检测系统[21],并在生产线上得到成功应用。《基于光度立体学的金属板带表面微小缺陷在线检测方法》徐科等机械工程学报2013检测示意图微小缺陷与常规缺陷同步检测装置关键点:二维图像上缺陷研究的关键是如何准确地分割出缺陷目标。图像目标分割方法大多是为特定应用设计的,具有较强的针对性和局限性。缺陷分割就是指将感兴趣的缺陷目标从被测表面的背景信息(如颜色、轮廓、亮度、形状)中分离出来,使缺陷直接成为分析和

7、处理对象的过程,是视觉检测的关键。缺陷分割是后续缺陷分析判别的基础,若分割中出现错误或误差而传播给后续的图像分析中,将导致检测错误或失败。因此,缺陷分割性能的优劣直接影响着后续的研究工作的进行,是表面缺陷检测中的一项关键技术。全局阈值分割双峰法、自适应迭代法和最大类间分割法东北林业大学纹理分割(可否获得高质量的图像,突出缺陷?)光源的作用是形成有利于后续检测算法复杂度降低和缺陷检测率提高的铸坯表面缺陷图像效果。光源的选择直接关系到采集图像的质量和图像中能否明显表露存在的缺陷。据统计,至少30%的图像质量和应用效果受到光源选择的直接

8、影响。采集到的理想图像应是完整的、均匀亮度、对比度强且没有畸变。难点:由于生产环境而造成的伪缺陷的出现极大的影响了检测的精度和准确度,引起检测系统的误动作。多维视角分析在上图一些步骤的基础上,增加了一些基于多维视角几何的分析步骤。多维视角分析的核心

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。