欢迎来到天天文库
浏览记录
ID:52319110
大小:294.51 KB
页数:34页
时间:2020-04-04
《样本置信区间和假设检验gdfsgsfd.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第3部分:单样本置信区间和假设检验第3部分:单样本置信区间和假设检验目的:这一部分的目的是介绍连续数据的置信区间和假设检验。目标:了解假设检验和置信区间的基本原理--确定所观测的差异是真实的,还是偶然因素引起的。计算样本平均值的置信区间,并将这一平均值与期望(或目标)平均值相比较。使用单样本置信区间和假设检验,将平均值与目标值相比较。举例洗衣机传动装置的总高度将影响制动性能。项目Y是总高度,目标值=5.394,加工这种部件时所使用的固定架共有8个。您想了解什么?使用第三个固定架生产出的部件的平均高度与目标值是否一致?分析步骤:1.将数据绘制成图2.使用假设检验和置信区
2、间来确定所观测到的差异是否真实。3.得出结论。设备3的10个部件的高度用图形来表示数据设备3中10个部件的高度5.3945.3945.3935.3945.3945.3955.3965.3975.3955.3955.3935.3945.3955.3965.397设备3高度(英寸)目标值=5.394英寸n=10x=5.3947s=0.00116ˆ总体平均值的最可能的范围是多少?x(5.3947)与目标值(5.394)之间的差异是由于偶然因素造成的吗?置信区间设备3所制造的所有部件的平均值最可能的取值范围是什么?让我们来计算一下置信区间,以便找出该值!单个平均值的置信区间置
3、信区间下限值1-aa/2a/2x置信区间上限值(1-)100%置信度,真正的总体均值包含在置信区间内。什么是t分布?类似于正态分布(z)正态分布(z):已知总体标准差,t分布(t):估计的标准差,s用于提供有关平均值的结论(置信区间和假设检验)我们将需要使用t分布z=(x-)nt=(x-)/(s/n)3210-1-2-30.40.30.20.10.0YztN-置信区间其中:x=样本平均值t=t表格中的t统计结果a=a风险df=自由度=n-1s=样本标准差n=样本中的数据点数量置信区间上限值=x+t(a/2,df)ns置信区间下限值=x-t(a/2,
4、df)ns用所给出的有关部件的数据代入以上公式…--置信区间计算利用设备3所生产的传输设备平均高度的置信区间使用=0.05(95%的置信区间)x=5.3947s=0.00116n=10df=n-1=9t(a/2,df)取自t表格。t(0.025,9)=2.262区间下限=x-t(a/2,df)ns=-()=区间上限=x+t(a/2,df)ns=+()=-t表格自由度为9=.05/2=.025范例--续设备3所制造部件的平均值是否在目标范围之内?设备3生产出的部件总体的平均值最有可能是5.3947,但实际值可能比该值大一点或小一点。5.3935.3945.3955.
5、3965.397设备3高度(英寸)目标值=5.394英寸平均值的95%置信区间置信区间上限值=5.3955英寸置信区间下限值=5.3939英寸设备3所生产的部件的总体平均值最可能的取值范围为5.3939到5.3955。举例--续置信区间说明以这种方式构成的区间的95%是正确的(包含真正的总体平均值),以此构成的区间的5%是不正确的。目标值5.394包含在此区间内。统计评价:没有证据证明设备3所制造部件的平均高度不在目标范围之内。实际评价:目标值刚好在置信区间内。计算时只用到10个数据点,并且=0.05。您可以使用置信区间来进一步调查设备3…………获得更多样本(如果是实
6、际的)并计算置信区间……使用不同的值来计算置信区间置信区间量化了数据的不定性。样本大小对置信区间的影响让我们取20个以上的样本(总数n=30),看一看对95%的置信区间有何影响。假设平均值和标准差保持不变:x=5.3947和s=0.00116。置信区间上限值=x+t(a/2,df)ns置信区间下限值=x-t(a/2,df)ns=-()==+()=样本大小对置信区间的影响--续通过增加样本,可以证明设备3所制造部件的平均高度不在目标范围内。目标值=5.394英寸n=10的95%置信区间为5.3939-5.3955。n=30的95%置信区间为5.3943-5.3951。唯
7、一改变的是n。5.3975.3965.3955.3945.3935.392设备3高度(英寸)平均值的95%置信区间置信上限=5.3951英寸置信下限=5.3943英寸n=10的95%置信区间为5.3939-5.3955.n=30的95%置信区间为5.3943-5.3951.唯一改变的是n。置信区间随样本容量的增加而减小。对置信区间的影响计算设备3所制造传送装置的平均高度的90%置信区间。取n=10(x=5.3947,s=0.00116)计算设备3所制造传送装置的平均高度的99%置信区间。取n=10(x=5.3947,s=0.00116)
此文档下载收益归作者所有