二次函数知识点总结1.doc

二次函数知识点总结1.doc

ID:52234434

大小:45.50 KB

页数:3页

时间:2020-03-25

二次函数知识点总结1.doc_第1页
二次函数知识点总结1.doc_第2页
二次函数知识点总结1.doc_第3页
资源描述:

《二次函数知识点总结1.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、公式含义交点式:y=a(X-x1)(X-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]在解决与二次函数的图象和x轴交点坐标有关的问题时,使用交点式较为方便。y=a(x-x1)(x-x2)找到函数图象与X轴的两个交点,分别记为x1和x2,代入公式,再有一个经过抛物线的点的坐标,即可求出a的值。将a、X1、X2代入y=a(x-x1)(x-x2),即可得到一个解析式,这是y=ax²;+bx+c因式分解得到的,将括号打开,即为一般式。X1,X2是关于ax²+bx+c=0的两个根。2交点式的推导设y=ax²+bx+c此函数与x轴有两交点,,即ax²+

2、bx+c=0有两根分别为x1,x2,a(x²+bx/a+c/a)=0根据韦达定理a[x²-(x1+x2)x+x1*x2]=0十字交叉相乘:1x-x11x-x2a(x-x1)(x-x2)就这样推出的。解决二次函数,还有一般式和顶点式一般式:y=ax²+bx+c顶点式:y=a(x-h)²+k交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]一般地,如果a,b,c是常数(a≠0),那么y叫做x的二次函数。2.二次函数的性质(1)抛物线的顶点是坐标原点,对称轴是y轴.(2)函数的图像与的符号关系.①当时抛物线开口向上顶点

3、为其最低点;②当时抛物线开口向下顶点为其最高点.(3)顶点是坐标原点,对称轴是轴的抛物线的解析式形式为.3.二次函数的图像是对称轴平行于(包括重合)y轴的抛物线.4.二次函数用配方法可化成:的形式,其中.5.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤.6.抛物线的三要素:开口方向、对称轴、顶点.①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.②平行于轴(或重合)的直线记作.特别地,轴记作直线.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同

4、,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是,对称轴是直线.(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。