欢迎来到天天文库
浏览记录
ID:52208951
大小:501.21 KB
页数:8页
时间:2020-03-25
《基于小波系数均差值的低压电弧故障诊断方法.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第29卷第1期山东建筑大学学报Vo1.29No.12014焦2月JOURNALOFSHANDONGJIANZHUUNIVERSITYFeb.2014文章编号:1673—7644(2014)O1—0001—08基于小波系数均差值的低压电弧故障诊断方法段培永,徐丽平,石嘉川,段晨旭,宁晨光(山东建筑大学山东省智能建筑技术重点实验室,山东济南250101)摘要:随着电力电子技术在低压领域的广泛应用,一些电器负载正常工作时的电压电流特性与故障电弧的典型特性相似,现有的小波变换故障检测方法难以区分故障电弧和特殊负载正常工作时的相似电弧,文章提出一种基于多分辨率分
2、析的快速小波变换检测故障电弧的新方法。文中方法对负载电流采样数据运用Mallat算法进行多尺度分解,将重构后的小波高频系数的均值及差值作为判据,对多种类型的负载在故障和正常运行条件下的电流特性进行分析验证。结果表明:该检测方法能准确区分故障电弧和相似电弧,辨别特殊负载的能力增强,低压供配电系统中电弧故障断路器故障诊断的准确率提高。与现有方法相比,文中方法具有计算简单、诊断可靠性高等特点。关键词:故障电弧;小波高频系数;Mallat算法;电弧故障断路器;干扰负载中图分类号:TP23文献标识码:AArcfaultdiagnosismethodforlowv
3、oltagelinesbasedonthemeananddi仃erenceofwaveletcoefficientsDuanPeiyong,XuLiping,ShiJiachuan,eta1.(ShandongKeyLaboratoryofIntelligentBuildingTechnology,ShandongJianzhuUniversity,Jinan250101,China)Abstract:Astheelectricpower&electronictechnologyisusedwidelyinlowvoltagearea.theprope
4、rtiesofvoltageandcurrentofsomeelectricalloadsinnormalworkingconditionscloselyresembleormimicthean—normalpropertiescreatedbythearcfault.Fortheexistingarcfaultdetectionmethodbasedonwavelettransformisdificulttodistinguishbetweenfaultarcandthesimilararcgeneratedbythespecialloaddurin
5、gnormalworking,thispaperproposesanewmethodofthefastwavelettransformbasedonmulti—resolutionanalysistodetectfaultarc.Inthismethod,thesamplingsignalofloadscurrentwasdecomposedtolowandhighfrequencysignalsusedtheMallatalgorithm,andthemeananddifferenceofthewavelethighfrequencycoeffici
6、entsreconstructedweretreatedasthecriteriaforthefaultdetecting.Thecurrentofmultipletypesofloadsworkinginnormaloran—normalcaseswereanalyzedintheexperimenttoverifytheaccuracyofthemethod.Theexperimentalresultsshowthat,thedetectionmethodcandistinguishbetweenfauharcandsimilararcaccura
7、tely,theabilitytoidentifyspecificloadswereenhanced,andthediagnosticaccuracyofthearCfaultcircuitinterrupterusedinlowvoltagepowersupplyanddistributionsystemwasimproved.Comparedwiththeexistingdetectionmethods,thismethodissimpleincalculationandhashighdiagnosticreliability.Keywords:f
8、aultarc;wavelethighfrequencycoeficients;Mallata
此文档下载收益归作者所有